Mixotrophy in the context of "Cryptomonad"

Play Trivia Questions online!

or

Skip to study material about Mixotrophy in the context of "Cryptomonad"

Ad spacer

⭐ Core Definition: Mixotrophy

A mixotroph is an organism that uses a mix of different sources of energy and carbon, instead of having a single trophic mode. Mixotrophs are situated somewhere on the continuum from complete autotrophy to complete heterotrophy. It is estimated that mixotrophs comprise more than half of all microscopic plankton. There are two types of eukaryotic mixotrophs. There are those with their own chloroplasts – including those with endosymbionts providing the chloroplasts. And there are those that acquire them through kleptoplasty, or through symbiotic associations with prey, or through 'enslavement' of the prey's organelles.

Possible combinations include photo- and chemotrophy, besides litho- and organotrophy, the latter including osmotrophy, phagotrophy and myzocytosis. Mixotrophs can be either eukaryotic or prokaryotic. Mixotrophs can take advantage of different environmental conditions.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Mixotrophy in the context of Cryptomonad

The cryptomonads (sometimes called cryptophytes) are a superclass of algae, most of which have plastids. They are traditionally considered a division of algae among phycologists, under the name of Cryptophyta. They are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella. Some may exhibit mixotrophy. They are classified as superclass Cryptomonada, which is divided into two classes: heterotrophic Goniomonadea and phototrophic Cryptophyceae. The two groups are united under three shared morphological characteristics: presence of a periplast, ejectisomes with secondary scroll, and mitochondrial cristae with flat tubules. Genetic studies as early as 1994 also supported the hypothesis that Goniomonas was sister to Cryptophyceae. A study in 2018 found strong evidence that the common ancestor of Cryptomonada was an autotrophic protist.

↓ Explore More Topics
In this Dossier

Mixotrophy in the context of Dinoflagellate

The dinoflagellates (from Ancient Greek δῖνος (dînos) 'whirling' and Latin flagellum 'whip, scourge'), also called dinophytes, are a monophyletic group of single-celled eukaryotes constituting the phylum Dinoflagellata and are usually considered protists. Dinoflagellates are mostly marine plankton, but they are also common in freshwater habitats. Their populations vary with sea surface temperature, salinity, and depth. Many dinoflagellates are photosynthetic, but a large fraction of these are in fact mixotrophic, combining photosynthesis with ingestion of prey (phagotrophy and myzocytosis).

In terms of number of species, dinoflagellates are one of the largest groups of marine eukaryotes, although substantially smaller than diatoms. Some species are endosymbionts of marine animals and play an important part in the biology of coral reefs. Other dinoflagellates are unpigmented predators on other protozoa, and a few forms are parasitic (for example, Oodinium and Pfiesteria). Some dinoflagellates produce resting stages, called dinoflagellate cysts or dinocysts, as part of their lifecycles; this occurs in 84 of the 350 described freshwater species and a little more than 10% of the known marine species. Dinoflagellates are alveolates possessing two flagella, the ancestral condition of bikonts.

↑ Return to Menu