Microsporidia in the context of "Crustacea"

Play Trivia Questions online!

or

Skip to study material about Microsporidia in the context of "Crustacea"

Ad spacer

⭐ Core Definition: Microsporidia

Microsporidia are a group of spore-forming unicellular parasites. These spores contain an extrusion apparatus that has a coiled polar tube ending in an anchoring disc at the apical part of the spore. They were once considered protozoans or protists, but are now known to be fungi, or a sister group to true fungi. These fungal microbes are obligate eukaryotic parasites that use a unique mechanism to infect host cells. They have recently been discovered in a 2017 Cornell study to infect Coleoptera (beetles) on a large scale. So far, about 1500 of the probably more than one million species are named. Microsporidia are restricted to animal hosts, and all major groups of animals host microsporidia. Most infect insects, but they are also responsible for common diseases of crustaceans and fish. The named species of microsporidia usually infect one host species or a group of closely related taxa. Approximately 10 percent of the known species are parasites of vertebrates—several species, most of which are opportunistic, can infect humans, in whom they can cause microsporidiosis.

After infection they influence their hosts in various ways and all organs and tissues are invaded, though generally by different species of specialised microsporidia. Some species are lethal, and a few are used in biological control of insect pests. Parasitic castration, gigantism, or change of host sex are all potential effects of microsporidian parasitism (in insects). In the most advanced cases of parasitism the microsporidium rules the host cell completely and controls its metabolism and reproduction, forming a xenoma.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Microsporidia in the context of Botanical name

A botanical name is a formal scientific name conforming to the International Code of Nomenclature for algae, fungi, and plants (ICN) and, if it concerns a plant cultigen, the additional cultivar or Group epithets must conform to the International Code of Nomenclature for Cultivated Plants (ICNCP). The code of nomenclature covers "all organisms traditionally treated as algae, fungi, or plants, whether fossil or non-fossil, including blue-green algae (Cyanobacteria), chytrids, oomycetes, slime moulds and photosynthetic protists with their taxonomically related non-photosynthetic groups (but excluding Microsporidia)."

The purpose of a formal name is to have a single name that is accepted and used worldwide for a particular plant or plant group. For example, the botanical name Bellis perennis denotes a plant species which is native to most of the countries of Europe and the Middle East, where it has accumulated various names in many languages. Later, the plant was introduced worldwide, bringing it into contact with more languages. English names for this plant species include: daisy, English daisy, and lawn daisy. The cultivar Bellis perennis 'Aucubifolia' is a golden-variegated horticultural selection of this species.

↑ Return to Menu

Microsporidia in the context of Hyperparasite

A hyperparasite, also known as a metaparasite, is a parasite whose host is itself a parasite, often specifically a parasitoid. Hyperparasites are found mainly among the wasp-waisted Apocrita within the Hymenoptera, and in two other insect orders, the Diptera (true flies) and Coleoptera (beetles). Seventeen families in Hymenoptera and a few species of Diptera and Coleoptera are hyperparasitic. Hyperparasitism developed from primary parasitism, which evolved in the Jurassic period in the Hymenoptera. Hyperparasitism intrigues entomologists because of its multidisciplinary relationship to evolution, ecology, behavior, biological control, taxonomy, and mathematical models.

↑ Return to Menu

Microsporidia in the context of Holomycota

Holomycota or Nucletmycea are a basal Opisthokont clade as sister of the Holozoa. It consists of the Cristidiscoidea and the kingdom Fungi. The position of nucleariids, unicellular free-living phagotrophic amoebae, as the earliest lineage of Holomycota suggests that animals and fungi independently acquired complex multicellularity from a common unicellular ancestor and that the osmotrophic lifestyle (one of the fungal hallmarks) was originated later in the divergence of this eukaryotic lineage. Opisthosporidians is a recently proposed taxonomic group that includes aphelids, Microsporidia and Cryptomycota, three groups of endoparasites.

Rozella (Cryptomycota) is the earliest diverging fungal genus in which chitin has been observed at least in some stages of their life cycle, although the chitinous cell wall (another fungal hallmark) and osmotrophy originated in a common ancestor of Blastocladiomycota and Chytridiomycota, which still contain some ancestral characteristics such as the flagellum in zoosporic stage. The groups of fungi with the characteristic hyphal growth, Zoopagomycota, Mucoromycotina and Dikarya, originated from a common ancestor ~700 Mya. Zoopagomycota are mostly pathogens of animals or other fungi, Mucoromycotina is a more diverse group including parasites, saprotrophs or ectomycorrhizal. Dikarya is the group embracing Ascomycota and Basidiomycota, which comprise ~98% of the described fungal species. Because of this rich diversity, Dikarya includes highly morphologically distinct groups, from hyphae or unicellular yeasts (such as the model organism Saccharomyces cerevisiae) to the complex multicellular fungi popularly known as mushrooms. Contrary to animals and land plants with complex multicellularity, the inferred phylogenetic relationships indicate that fungi acquired and lost multicellularity multiple times along Ascomycota and Basidiomycota evolution.

↑ Return to Menu

Microsporidia in the context of Microsporidiosis

Microsporidiosis is an opportunistic intestinal infection that causes diarrhea and wasting in immunocompromised individuals (HIV, for example). It results from different species of microsporidia, a group of microbial (unicellular) fungi.

In HIV-infected individuals, microsporidiosis generally occurs when CD4+ T cell counts fall below 150.

↑ Return to Menu

Microsporidia in the context of Xenoma

A xenoma (also known as a 'xenoparasitic complex') is a growth caused by various protists and fungi, most notably microsporidia. It can occur on numerous organisms; however is predominantly found on fish.

In most cases the host cell and nuclei suffers from hypertrophy resulting in a change in organisation of the cell and its structure and can result in polyploid nuclei. This outcome is due to the microsporidian parasite proliferating inside the host cell. This results in a 'symbiotic co-existence' between the parasite and the host cell. This forms the xenoparasitic complex. They tend to contain numerous cellular components as well as microsporidia at different developmental stages and spores.

↑ Return to Menu

Microsporidia in the context of Entomopathogenic fungus

Entomopathogenic fungi are parasitic unicellular or multicellular microorganisms belonging to the kingdom of Fungi, that can infect and seriously disable or kill insects.

Pathogenicity for insects is widely distributed in the kingdom of fungi and occur in six fungal phyla (Ascomycota, Oomycetes, Basidiomycota, Chytridiomycota, Zygomycota, and Microsporidia). It plays a vital ecological role in controlling insect populations by impacting 19 out of 30 known insect orders. Some fungal entomopathogens are opportunistic whereas some have evolved into highly specific pathogens of insects.

↑ Return to Menu

Microsporidia in the context of Opisthosporidia

Opisthosporidia is a superphylum of intracellular parasites with amoeboid vegetative stage, defined as a common group of eukaryotic groups Microsporidia, Cryptomycota (also known as Rozellida, Rozellomycota, orRozellosporidia) and Aphelidea. They have been considered to represent a monophyletic lineage with shared ecological and structural features, being a sister clade of the Fungi. Together with the Fungi they represent a sister clade of the Cristidiscoidea, together forming the Holomycota.

Several other basal groups of the freshwater, marine and soil-inhabiting Holomycota were identified in recent studies, as the 'basal clone group 1' (BCG1=NCLC1), 'basal clone group 2' (BCG2), 'basal marine group' (NAMAKO-37), 'basal group GS01', the inner relationships of Opisthosporidia were clarified and their monophyly questioned: Cryptomycota and Microsporidia were proposed to join the phylum Rozellomycota, while Aphelidea were considered as a separate, though related phylum and all these groups were considered basal lineages of the kingdom Fungi.

↑ Return to Menu