Microscopy in the context of "Microscope"

Play Trivia Questions online!

or

Skip to study material about Microscopy in the context of "Microscope"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Microscopy in the context of Microscope

A microscope (from Ancient Greek μικρός (mikrós) 'small' and σκοπέω (skopéō) 'to look (at); examine, inspect') is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisible to the eye unless aided by a microscope.

There are many types of microscopes, and they may be grouped in different ways. One way is to describe the method an instrument uses to interact with a sample and produce images, either by sending a beam of light or electrons through a sample in its optical path, by detecting photon emissions from a sample, or by scanning across and a short distance from the surface of a sample using a probe. The most common microscope (and the first to be invented) is the optical microscope, which uses lenses to refract visible light that passed through a thinly sectioned sample to produce an observable image. Other major types of microscopes are the fluorescence microscope, electron microscope (both the transmission electron microscope and the scanning electron microscope) and various types of scanning probe microscopes.

↓ Explore More Topics
In this Dossier

Microscopy in the context of History of biology

The history of biology traces the study of the living world from ancient to modern times. Although the concept of biology as a single coherent field arose in the 19th century, the biological sciences emerged from traditions of medicine and natural history reaching back to Ayurveda, ancient Egyptian medicine and the works of Aristotle, Theophrastus and Galen in the ancient Greco-Roman world. This ancient work was further developed in the Middle Ages by Muslim physicians and scholars such as Avicenna. During the European Renaissance and early modern period, biological thought was revolutionized in Europe by a renewed interest in empiricism and the discovery of many novel organisms. Prominent in this movement were Vesalius and Harvey, who used experimentation and careful observation in physiology, and naturalists such as Linnaeus and Buffon who began to classify the diversity of life and the fossil record, as well as the development and behavior of organisms. Antonie van Leeuwenhoek revealed by means of microscopy the previously unknown world of microorganisms, laying the groundwork for cell theory. The growing importance of natural theology, partly a response to the rise of mechanical philosophy, encouraged the growth of natural history (although it entrenched the argument from design).

Over the 18th and 19th centuries, biological sciences such as botany and zoology became increasingly professional scientific disciplines. Lavoisier and other physical scientists began to connect the animate and inanimate worlds through physics and chemistry. Explorer-naturalists such as Alexander von Humboldt investigated the interaction between organisms and their environment, and the ways this relationship depends on geography—laying the foundations for biogeography, ecology and ethology. Naturalists began to reject essentialism and consider the importance of extinction and the mutability of species. Cell theory provided a new perspective on the fundamental basis of life. These developments, as well as the results from embryology and paleontology, were synthesized in Charles Darwin's theory of evolution by natural selection. The end of the 19th century saw the fall of spontaneous generation and the rise of the germ theory of disease, though the mechanism of inheritance remained a mystery.

↑ Return to Menu

Microscopy in the context of Cytology

Cell biology, cellular biology, or cytology, is the branch of biology that studies the structure, function, and behavior of the cells. All organisms are made of cells. A cell is the basic unit of life that is responsible for the living and functioning of an organism. Cell biology encompasses both prokaryotic and eukaryotic cells, with subtopics including the study of cell metabolism, cell communication, cell cycle, biochemistry, and cell composition.

The study of cells is performed using microscopy techniques, cell culture, and cell fractionation. These are used for research into how cells function, which ultimately gives insight into larger organisms. Knowing the components of cells and how cells work is fundamental to all biological sciences and is essential for research in biomedical fields such as cancer, and other diseases. Research in cell biology is interconnected to other fields such as genetics, molecular genetics, molecular biology, medical microbiology, immunology, and cytochemistry.

↑ Return to Menu

Microscopy in the context of Electron lens

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a detector such as a scintillator attached to a charge-coupled device or a direct electron detector.

Transmission electron microscopes are capable of imaging at a significantly higher resolution than light microscopes, owing to the smaller de Broglie wavelength of electrons. This enables the instrument to capture fine detail—even as small as a single column of atoms, which is thousands of times smaller than a resolvable object seen in a light microscope. Transmission electron microscopy is a major analytical method in the physical, chemical and biological sciences. TEMs find application in cancer research, virology, and materials science as well as pollution, nanotechnology and semiconductor research, but also in other fields such as paleontology and palynology.

↑ Return to Menu

Microscopy in the context of Forensic

Forensic science, often confused with criminalistics, is the application of science principles and methods to support decision-making related to rules or law, generally specifically criminal and civil law.

During criminal investigation in particular, it is governed by the legal standards of admissible evidence and criminal procedure. It is a broad field utilizing numerous practices such as the analysis of DNA, fingerprints, bloodstain patterns, firearms, ballistics, toxicology, microscopy, and fire debris analysis.

↑ Return to Menu

Microscopy in the context of Cell type

A cell type is a classification used to identify cells that share morphological or phenotypical features. A multicellular organism may contain cells of a number of widely differing and specialized cell types, such as muscle cells and skin cells, that differ both in appearance and function yet have identical genomic sequences. Cells may have the same genotype, but belong to different cell types due to the differential regulation of the genes they contain. Classification of a specific cell type is often done through the use of microscopy (such as those from the cluster of differentiation family that are commonly used for this purpose in immunology). Recent developments in single cell RNA sequencing facilitated classification of cell types based on shared gene expression patterns. This has led to the discovery of many new cell types in e.g. mouse grey matter, hippocampus, dorsal root ganglion and spinal cord.

Animals have evolved a greater diversity of cell types in a multicellular body (100–150 different cell types), comparedwith 10–20 in plants, fungi, and protists. The exact number of cell types is, however, undefined, and the Cell Ontology, as of 2021, lists over 2,300 different cell types.

↑ Return to Menu

Microscopy in the context of Organelle

An organelle is a specialized subunit, within a biological cell, that has a specific function. The name organelle comes from the idea that these structures are parts of cells, as organs are to the body, hence organelle, the suffix -elle being a diminutive. Organelles are either separately enclosed within their own lipid bilayers (also called membrane-bound organelles) or are spatially distinct functional units without a surrounding lipid bilayer (non-membrane bounded organelles). Although most organelles are functional units within cells, some functional units that extend outside of cells are often termed organelles, such as cilia, the flagellum and archaellum, and the trichocyst (these could be referred to as membrane bound in the sense that they are attached to (or bound to) the membrane).

Organelles are identified by microscopy, and can also be purified by cell fractionation. There are many types of organelles, particularly in eukaryotic cells. They include structures that make up the endomembrane system (such as the nuclear envelope, endoplasmic reticulum, and Golgi apparatus), and other structures such as mitochondria and plastids. While prokaryotes do not possess eukaryotic organelles, some do contain protein-shelled bacterial microcompartments, which are thought to act as primitive prokaryotic organelles; and there is also evidence of other membrane-bounded structures. Also, the prokaryotic flagellum which protrudes outside the cell, and its motor, as well as the largely extracellular pilus, are often spoken of as organelles.

↑ Return to Menu

Microscopy in the context of Microbiology

Microbiology (from Ancient Greek μῑκρος (mīkros) 'small' βίος (bíos) 'life' and -λογία (-logía) 'study of') is the scientific study of microorganisms, those being of unicellular (single-celled), multicellular (consisting of complex cells), or acellular (lacking cells). Microbiology encompasses numerous sub-disciplines including virology, bacteriology, protistology, mycology, immunology, and parasitology.

The organisms that constitute the microbial world are characterized as either prokaryotes or eukaryotes; Eukaryotic microorganisms possess membrane-bound organelles and include fungi and protists, whereas prokaryotic organisms are conventionally classified as lacking membrane-bound organelles and include Bacteria and Archaea. Microbiologists traditionally relied on culture, staining, and microscopy for the isolation and identification of microorganisms. However, less than 1% of the microorganisms present in common environments can be cultured in isolation using current means. With the emergence of biotechnology, Microbiologists currently rely on molecular biology tools such as DNA sequence-based identification, for example, the 16S rRNA gene sequence used for bacterial identification.

↑ Return to Menu