Microfluidics in the context of Capillary force


Microfluidics in the context of Capillary force

Microfluidics Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Microfluidics in the context of "Capillary force"


⭐ Core Definition: Microfluidics

Microfluidics refers to a system that manipulates a small amount of fluids (10 to 10 liters) using small channels with sizes of ten to hundreds of micrometres. It is a multidisciplinary field that involves molecular analysis, molecular biology, and microelectronics. It has practical applications in the design of systems that process low volumes of fluids to achieve multiplexing, automation, and high-throughput screening. Microfluidics emerged in the beginning of the 1980s and is used in the development of inkjet printheads, DNA chips, lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies.

Typically microfluidic systems transport, mix, separate, or otherwise process fluids. Various applications rely on passive fluid control using capillary forces, in the form of capillary flow modifying elements, akin to flow resistors and flow accelerators. In some applications, external actuation means are additionally used for a directed transport of the media. Examples are rotary drives applying centrifugal forces for the fluid transport on the passive chips. Active microfluidics refers to the defined manipulation of the working fluid by active (micro) components such as micropumps or microvalves. Micropumps supply fluids in a continuous manner or are used for dosing. Microvalves determine the flow direction or the mode of movement of pumped liquids. Often, processes normally carried out in a lab are miniaturised on a single chip, which enhances efficiency and mobility, and reduces sample and reagent volumes.

↓ Menu
HINT:

In this Dossier

Microfluidics in the context of Interferometry

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy (and its applications to chemistry), quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

Interferometers are devices that extract information from interference. They are widely used in science and industry for the measurement of microscopic displacements, refractive index changes and surface irregularities. In the case with most interferometers, light from a single source is split into two beams that travel in different optical paths, which are then combined again to produce interference; two incoherent sources can also be made to interfere under some circumstances. The resulting interference fringes give information about the difference in optical path lengths. In analytical science, interferometers are used to measure lengths and the shape of optical components with nanometer precision; they are the highest-precision length measuring instruments in existence. In Fourier transform spectroscopy they are used to analyze light containing features of absorption or emission associated with a substance or mixture. An astronomical interferometer consists of two or more separate telescopes that combine their signals, offering a resolution equivalent to that of a telescope of diameter equal to the largest separation between its individual elements.

View the full Wikipedia page for Interferometry
↑ Return to Menu

Microfluidics in the context of Microfabrication

Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades, microelectromechanical systems (MEMS), microsystems (European usage), micromachines (Japanese terminology) and their subfields have re-used, adapted or extended microfabrication methods. These subfields include microfluidics/lab-on-a-chip, optical MEMS (also called MOEMS), RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale (for example NEMS, for nano electro mechanical systems). The production of flat-panel displays and solar cells also uses similar techniques.

Miniaturization of various devices presents challenges in many areas of science and engineering: physics, chemistry, materials science, computer science, ultra-precision engineering, fabrication processes, and equipment design. It is also giving rise to various kinds of interdisciplinary research. The major concepts and principles of microfabrication are microlithography, doping, thin films, etching, bonding, and polishing.

View the full Wikipedia page for Microfabrication
↑ Return to Menu

Microfluidics in the context of Electrochemical engineering

Electrochemical engineering is the branch of chemical engineering dealing with the technological applications of electrochemical phenomena, such as electrosynthesis of chemicals, electrowinning and refining of metals, flow batteries and fuel cells, surface modification by electrodeposition, electrochemical separations and corrosion.

According to the IUPAC, the term electrochemical engineering is reserved for electricity-intensive processes for industrial or energy storage applications and should not be confused with applied electrochemistry, which comprises small batteries, amperometric sensors, microfluidic devices, microelectrodes, solid-state devices, voltammetry at disc electrodes, etc.

View the full Wikipedia page for Electrochemical engineering
↑ Return to Menu

Microfluidics in the context of Ex vivo

Ex vivo (Latin for 'out of the living') refers to biological studies involving tissues, organs, or cells maintained outside their native organism under controlled laboratory conditions. By carefully managing factors such as temperature, oxygenation, nutrient delivery, and perfusing a nutrient solution through the tissue's vasculature, researchers sustain function long enough to conduct experiments that would be difficult or unethical in a living body. Ex vivo models occupy a middle ground between in vitro (lit.'in the glass') models, which typically use isolated cells, and in vivo (lit.'in the living') studies conducted inside living organisms.

Ex vivo platforms support pharmacologic screening, toxicology testing, transplant evaluation, developmental biology, and investigations of disease-mechanism research across medicine and biology, from cardiology and neuroscience to dermatology and orthopedics. Because they often use human tissues obtained from clinical procedures or biobanks, they can reduce reliance on live-animal experimentation; their utility, however, is limited by finite viability, incomplete systemic integration, and post-mortem biochemical changes that accumulate over time. The earliest perfusion studies were conducted in the mid-19th century, and subsequent advances in sterilization, imaging, and microfluidics have facilitated broader adoption into the 20th and 21st centuries. Regulatory oversight depends on specimen origin: human ex vivo research is subject to informed consent, whereas animal-derived models fall under institutional animal care guidelines.

View the full Wikipedia page for Ex vivo
↑ Return to Menu

Microfluidics in the context of Lab-on-a-chip

A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single integrated circuit (commonly called a "chip") of only millimeters to a few square centimeters to achieve automation and high-throughput screening. LOCs can handle extremely small fluid volumes down to less than pico-liters. Lab-on-a-chip devices are a subset of microelectromechanical systems (MEMS) devices and sometimes called "micro total analysis systems" (μTAS). LOCs may use microfluidics, the physics, manipulation and study of minute amounts of fluids. However, strictly regarded "lab-on-a-chip" indicates generally the scaling of single or multiple lab processes down to chip-format, whereas "μTAS" is dedicated to the integration of the total sequence of lab processes to perform chemical analysis.

View the full Wikipedia page for Lab-on-a-chip
↑ Return to Menu

Microfluidics in the context of Microvalve

A microvalve is a microscale valve, i.e. a microfluidic two-port component that regulates the flow between two fluidic ports. Microvalves are basic components in microfluidic devices, such as labs-on-a-chip, where they are used to control the fluidic transport. During the period from 1995 to 2005, many microelectromechanical systems-based microvalves were developed.

Microvalves found today can be roughly categorized as active microvalves and passive microvalves.Based on the medium they control, microvalves can be divided into gas microvalves and liquid microvalves.Based on their initial mode, microvalves can be divided into normally open, normally closed and bistable microvalves.

View the full Wikipedia page for Microvalve
↑ Return to Menu