Methanogenesis in the context of "Waterlogging (agriculture)"

Play Trivia Questions online!

or

Skip to study material about Methanogenesis in the context of "Waterlogging (agriculture)"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Methanogenesis in the context of Waterlogging (agriculture)

Waterlogging water is the saturation of soil with water. Soil may be regarded as waterlogged when it is nearly saturated with water much of the time such that its air phase is restricted and anaerobic conditions prevail. In extreme cases of prolonged waterlogging, anaerobiosis occurs, the roots of mesophytes suffer, and the subsurface reducing atmosphere leads to such processes as denitrification, methanogenesis, and the reduction of iron and manganese oxides.

All plants, including crop, require air (specifically, oxygen) to respire, produce energy, and keep their cells alive. In agriculture, waterlogging typically blocks air from getting to the roots. With the exception of rice (Oryza sativa), most crops like maize and potato, are therefore highly intolerant to waterlogging. Plant cells use a variety of signals such the oxygen concentration, plant hormones like ethylene, energy and sugar status to acclimate to waterlogging-induced oxygen deprivation. Roots can survive waterlogging by forming aerenchyma, inducing anaerobic metabolism, and changing root system architecture.

↓ Explore More Topics
In this Dossier

Methanogenesis in the context of Methanogen

Methanogens are anaerobic archaea that produce methane as a byproduct of their energy metabolism, i.e., catabolism. Methane production, or methanogenesis, is the only biochemical pathway for ATP generation in methanogens. All known methanogens belong exclusively to the domain Archaea, although some bacteria, plants, and animal cells are also known to produce methane. However, the biochemical pathway for methane production in these organisms differs from that in methanogens and does not contribute to ATP formation. Methanogens belong to various phyla within the domain Archaea. Previous studies placed all known methanogens into the superphylum Euryarchaeota. However, recent phylogenomic data have led to their reclassification into several different phyla. Methanogens are common in various anoxic environments, such as marine and freshwater sediments, wetlands, the digestive tracts of animals, wastewater treatment plants, rice paddy soil, and landfills. While some methanogens are extremophiles, such as Methanopyrus kandleri, which grows between 84 and 110 °C, or Methanonatronarchaeum thermophilum, which grows at a pH range of 8.2 to 10.2 and a Na concentration of 3 to 4.8 M, most of the isolates are mesophilic and grow around neutral pH.

↑ Return to Menu