Meteoroid in the context of Earth (planet)


Meteoroid in the context of Earth (planet)

Meteoroid Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Meteoroid in the context of "Earth (planet)"


⭐ Core Definition: Meteoroid

A meteoroid (/ˈmtiərɔɪd/ MEE-tee-ə-royd) is a small body in outer space.Meteoroids are distinguished as objects significantly smaller than asteroids, ranging in size from grains to objects up to one meter (3.28 feet) wide. Objects smaller than meteoroids are classified as micrometeoroids or space dust. Many are fragments from comets or asteroids, whereas others are collision impact debris ejected from bodies such as the Moon or Mars.

The visible passage of a meteoroid, comet, or asteroid entering Earth's atmosphere is called a meteor, and a series of many meteors appearing seconds or minutes apart and appearing to originate from the same fixed point in the sky is called a meteor shower.

↓ Menu
HINT:

In this Dossier

Meteoroid in the context of Astronomy

Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry to explain their origin and their overall evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroids, asteroids, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere. Cosmology is the branch of astronomy that studies the universe as a whole.

Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky. These include the Egyptians, Babylonians, Greeks, Indians, Chinese, Maya, and many ancient indigenous peoples of the Americas. In the past, astronomy included disciplines as diverse as astrometry, celestial navigation, observational astronomy, and the making of calendars.

View the full Wikipedia page for Astronomy
↑ Return to Menu

Meteoroid in the context of Earth

Earth is the third planet from the Sun and the only astronomical object known to harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all of Earth's water is contained in its global ocean, covering 70.8% of Earth's crust. The remaining 29.2% of Earth's crust is land, most of which is located in the form of continental landmasses within Earth's land hemisphere. Most of Earth's land is at least somewhat humid and covered by vegetation, while large ice sheets at Earth's polar deserts retain more water than Earth's groundwater, lakes, rivers, and atmospheric water combined. Earth's crust consists of slowly moving tectonic plates, which interact to produce mountain ranges, volcanoes, and earthquakes. Earth has a liquid outer core that generates a magnetosphere capable of deflecting most of the destructive solar winds and cosmic radiation.

Earth has a dynamic atmosphere, which sustains Earth's surface conditions and protects it from most meteoroids and UV-light at entry. It is composed primarily of nitrogen and oxygen. Water vapor is widely present in the atmosphere, forming clouds that cover most of the planet. The water vapor acts as a greenhouse gas and, together with other greenhouse gases in the atmosphere, particularly carbon dioxide (CO2), creates the conditions for both liquid surface water and water vapor to persist via the capturing of energy from the Sun's light. This process maintains the current average surface temperature of 14.76 °C (58.57 °F), at which water is liquid under normal atmospheric pressure. Differences in the amount of captured energy between geographic regions (as with the equatorial region receiving more sunlight than the polar regions) drive atmospheric and ocean currents, producing a global climate system with different climate regions, and a range of weather phenomena such as precipitation, allowing components such as carbon and nitrogen to cycle.

View the full Wikipedia page for Earth
↑ Return to Menu

Meteoroid in the context of Atmosphere of Earth

The atmosphere of Earth consists of a layer of mixed gas (commonly referred to as air) that is retained by gravity, surrounding the Earth's surface. It contains variable quantities of suspended aerosols and particulates that create weather features such as clouds and hazes. The atmosphere serves as a protective buffer between the Earth's surface and outer space. It shields the surface from most meteoroids and ultraviolet solar radiation, reduces diurnal temperature variation – the temperature extremes between day and night, and keeps it warm through heat retention via the greenhouse effect. The atmosphere redistributes heat and moisture among different regions via air currents, and provides the chemical and climate conditions that allow life to exist and evolve on Earth.

By mole fraction (i.e., by quantity of molecules), dry air contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other trace gases (see Composition below for more detail). Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere.

View the full Wikipedia page for Atmosphere of Earth
↑ Return to Menu

Meteoroid in the context of Asteroid

An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the inner Solar System or is co-orbital with Jupiter (Trojan asteroids). Asteroids are rocky, metallic, or icy bodies with no atmosphere, and are broadly classified into C-type (carbonaceous), M-type (metallic), or S-type (silicaceous). The size and shape of asteroids vary significantly, ranging from small rubble piles under a kilometer across to Ceres, a dwarf planet almost 1000 km in diameter. A body is classified as a comet, not an asteroid, if it shows a coma (tail) when warmed by solar radiation, although recent observations suggest a continuum between these types of bodies.

Of the roughly one million known asteroids, the greatest number are located between the orbits of Mars and Jupiter, approximately 2 to 4 astronomical units (AU) from the Sun, in a region known as the main asteroid belt. The total mass of all the asteroids combined is only 3% that of Earth's Moon. The majority of main belt asteroids follow slightly elliptical, stable orbits, revolving in the same direction as the Earth and taking from three to six years to complete a full circuit of the Sun.

View the full Wikipedia page for Asteroid
↑ Return to Menu

Meteoroid in the context of Space environment

Space environment is a branch of astronautics, aerospace engineering and space physics that seeks to understand and address conditions existing in space that affect the design and operation of spacecraft. A related subject, space weather, deals with dynamic processes in the solar-terrestrial system that can give rise to effects on spacecraft, but that can also affect the atmosphere, ionosphere and geomagnetic field, giving rise to several other kinds of effects on human technologies.

Effects on spacecraft can arise from radiation, space debris and meteoroid impact, upper atmospheric drag and spacecraft electrostatic charging. Various mitigation strategies have been adopted.

View the full Wikipedia page for Space environment
↑ Return to Menu

Meteoroid in the context of Perseids

The Perseids are a prolific meteor shower associated with the comet Swift–Tuttle that are usually visible from mid-July to late-August. The meteors are called the Perseids because they appear from the general direction of the constellation Perseus and in more modern times have a radiant bordering on Cassiopeia and Camelopardalis.

View the full Wikipedia page for Perseids
↑ Return to Menu

Meteoroid in the context of Planetary system

A planetary system consists of a set of non-stellar bodies which are gravitationally bound to and in orbit of a star or star system. Generally speaking, such systems will include planets, and may include other objects such as dwarf planets, asteroids, natural satellites, meteoroids, comets, planetesimals, and circumstellar disks. The Solar System is an example of a planetary system, in which Earth, seven other planets, and other celestial objects are bound to and revolve around the Sun. The term exoplanetary system is sometimes used in reference to planetary systems other than the Solar System. By convention planetary systems are named after their host, or parent, star, as is the case with the Solar System being named after "Sol" (Latin for sun).

As of 30 October 2025, there are 6,128 confirmed exoplanets in 4,584 planetary systems, with 1,017 systems having more than one planet. Debris disks are known to be common while other objects are more difficult to observe.

View the full Wikipedia page for Planetary system
↑ Return to Menu

Meteoroid in the context of Meteor

A meteor, known colloquially as a shooting star, is a glowing streak of a small body (usually meteoroid) going through Earth's atmosphere, after being heated to incandescence by collisions with air molecules in the upper atmosphere, creating a streak of light via its rapid motion and sometimes also by shedding glowing material in its wake. Meteors typically occur in the mesosphere at altitudes from 76–100 kilometres (47–62 miles). The root word meteor comes from the Greek meteōros, meaning "high in the air".

Millions of meteors occur in Earth's atmosphere daily. Most meteoroids that cause meteors are about the size of a grain of sand, i.e. they are usually 1 mm (125 in) or smaller. Meteoroid sizes can be calculated from their mass and density which, in turn, can be estimated from the observed meteor trajectory in the upper atmosphere.Meteors may occur in showers, which arise when Earth passes through a stream of debris left by a comet, or as "random" or "sporadic" meteors, not associated with a specific stream of space debris. A number of specific meteors have been observed, largely by members of the public and largely by accident, but with enough detail that orbits of the meteoroids producing the meteors have been calculated. The atmospheric velocities of meteors result from the movement of Earth around the Sun at about 30 km/s (67,000 mph; 110,000 km/h), the orbital speeds of meteoroids, and the gravity well of Earth.

View the full Wikipedia page for Meteor
↑ Return to Menu

Meteoroid in the context of Meteorite

A meteorite is a rock that originated in outer space and has fallen to the surface of a planet or moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical interactions with the atmospheric gases cause it to heat up and radiate energy. It then becomes a meteor and forms a fireball, also known as a shooting star; astronomers call the brightest examples "bolides". Once it settles on the larger body's surface, the meteor becomes a meteorite. Meteorites vary greatly in size. For geologists, a bolide is a meteorite large enough to create an impact crater.

Meteorites that are recovered after being observed as they transit the atmosphere and impact Earth are called meteorite falls. All others are known as meteorite finds. Meteorites have traditionally been divided into three broad categories: stony meteorites that are rocks, mainly composed of silicate minerals; iron meteorites that are largely composed of ferronickel; and stony-iron meteorites that contain large amounts of both metallic and rocky material. Modern classification schemes divide meteorites into groups according to their structure, chemical and isotopic composition and mineralogy. "Meteorites" less than ~1 mm (364 inch) in diameter are classified as micrometeorites, however micrometeorites differ from meteorites in that they typically melt completely in the atmosphere and fall to Earth as quenched droplets. Extraterrestrial meteorites have been found on the Moon and on Mars.

View the full Wikipedia page for Meteorite
↑ Return to Menu

Meteoroid in the context of Micrometeoroids

A micrometeoroid is a tiny meteoroid: a small particle of rock in space, usually weighing less than a gram. A micrometeorite is such a particle that survives passage through Earth's atmosphere and reaches Earth's surface.

The term "micrometeoroid" was officially deprecated in 2017 by the International Astronomical Union, the primary international association of astronomers, as redundant to "meteoroid." It remains in use in astronautical engineering to refer to small, difficult to detect objects that can impact and damage spacecraft.

View the full Wikipedia page for Micrometeoroids
↑ Return to Menu

Meteoroid in the context of Impact event

An impact event is a collision between astronomical objects causing measurable effects. Impact events have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal effect. When large objects impact terrestrial planets such as the Earth, there can be significant physical and biospheric consequences, as the impacting body is usually traveling at several kilometres per second (km/s), with a minimum impact speed of 11.2 km/s (25,054 mph; 40,320 km/h) for bodies striking Earth. While planetary atmospheres can mitigate some of these impacts through the effects of atmospheric entry, many large bodies retain sufficient energy to reach the surface and cause substantial damage. This results in the formation of impact craters and structures, shaping the dominant landforms found across various types of solid objects found in the Solar System. Their prevalence and ubiquity present the strongest empirical evidence of the frequency and scale of these events.

Impact events appear to have played a significant role in the evolution of the Solar System since its formation. Major impact events have significantly shaped Earth's history, and have been implicated in the formation of the Earth–Moon system. Interplanetary impacts have also been proposed to explain the retrograde rotation of Uranus and Venus. Impact events also appear to have played a significant role in the evolutionary history of life. Impacts may have helped deliver the building blocks for life (the panspermia theory relies on this premise). Impacts have been suggested as the origin of water on Earth. They have also been implicated in several mass extinctions. The prehistoric Chicxulub impact, 66 million years ago, is believed to be the cause not only of the Cretaceous–Paleogene extinction event but acceleration of the evolution of mammals, leading to their dominance and, in turn, setting in place conditions for the eventual rise of humans.

View the full Wikipedia page for Impact event
↑ Return to Menu

Meteoroid in the context of Meteor shower

A meteor shower is a celestial event in which a number of meteors are observed to radiate, or originate, from one point in the night sky. These meteors are caused by streams of cosmic debris called meteoroids entering Earth's atmosphere at extremely high speeds on parallel trajectories. Most meteors are smaller than a grain of sand, so almost all of them disintegrate and never hit the Earth's surface. Very intense or unusual meteor showers are known as meteor outbursts and meteor storms, which produce at least 1,000 meteors an hour, most notably from the Leonids. The Meteor Data Centre lists over 900 suspected meteor showers of which about 100 are well established. Several organizations point to viewing opportunities on the Internet. NASA maintains a daily map of active meteor showers.

Historically, meteor showers were regarded as an atmospheric phenomenon. In 1794, Ernst Chladni proposed that meteors originated in outer space. The Great Meteor Storm of 1833 led Denison Olmsted to show it arrived as a cloud of space dust, with the streaks forming a radiant point in the direction of the constellation of Leo. In 1866, Giovanni Schiaparelli proposed that meteors came from comets when he showed that the Leonid meteor shower shared the same orbit as the Comet Tempel. Astronomers learned to compute the orbits of these clouds of cometary dust, including how they are perturbed by planetary gravity. Fred Whipple in 1951 proposed that comets are "dirty snowballs" that shed meteoritic debris as their volatiles are ablated by solar energy in the inner Solar System.

View the full Wikipedia page for Meteor shower
↑ Return to Menu

Meteoroid in the context of Panspermia

Panspermia (from Ancient Greek πᾶν (pan) 'all' and σπέρμα (sperma) 'seed') is the hypothesis that life exists throughout the universe, distributed by cosmic dust, meteoroids, asteroids, comets, and planetoids, as well as by spacecraft carrying unintended contamination by microorganisms, known as directed panspermia. The theory argues that life did not originate on Earth, but instead evolved somewhere else and seeded life as we know it.

Panspermia comes in many forms, such as radiopanspermia, lithopanspermia, and directed panspermia. Regardless of its form, the theories generally propose that microbes able to survive in outer space (such as certain types of bacteria or plant spores) can become trapped in debris ejected into space after collisions between planets and small Solar System bodies that harbor life. This debris containing the lifeforms is then transported by meteors between bodies in a planetary system, or even across planetary systems within a galaxy. In this way, panspermia studies concentrate not on how life began but on methods that may distribute it within the Universe. This point is often used as a criticism of the theory.

View the full Wikipedia page for Panspermia
↑ Return to Menu