Metamorphic rocks in the context of "Greenschist facies"

Play Trivia Questions online!

or

Skip to study material about Metamorphic rocks in the context of "Greenschist facies"

Ad spacer

⭐ Core Definition: Metamorphic rocks

Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than 150 to 200 °C (300 to 400 °F) and, often, elevated pressure of 100 megapascals (1,000 bar) or more, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be an igneous, sedimentary, or existing metamorphic rock.

Metamorphic rocks make up a large part of the Earth's crust and form 12% of the Earth's land surface. They are classified by their protolith, their chemical and mineral makeup, and their texture. They may be formed simply by being deeply buried beneath the Earth's surface, where they are subject to high temperatures and the great pressure of the rock layers above. They can also form from tectonic processes such as continental collisions, which cause horizontal pressure, friction, and distortion. Metamorphic rock can be formed locally when rock is heated by the intrusion of hot molten rock called magma from the Earth's interior. The study of metamorphic rocks (now exposed at the Earth's surface following erosion and uplift) provides information about the temperatures and pressures that occur at great depths within the Earth's crust.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Metamorphic rocks in the context of Greenschist facies

Greenschists are metamorphic rocks that formed under the lowest temperatures and pressures usually produced by regional metamorphism, typically 300–450 °C (570–840 °F) and 2–10 kilobars (29,000–145,000 psi). Greenschists commonly have an abundance of green minerals such as chlorite, serpentine, and epidote, and platy minerals such as muscovite and platy serpentine. The platiness gives the rock schistosity (a tendency to split into layers). Other common minerals include quartz, orthoclase, talc, carbonate minerals and amphibole (actinolite).

Greenschist is a general field petrologic term for metamorphic or altered mafic volcanic rock. In Europe, the term prasinite is sometimes used. A greenstone is sometimes a greenschist but can also be rock types without any schistosity, especially metabasalt (spilite). However, basalts may remain quite black if primary pyroxene does not revert to chlorite or actinolite. To qualify for the name, a rock must also exhibit schistosity or some foliation or layering. The rock is derived from basalt, gabbro or similar rocks containing sodium-rich plagioclase feldspar, chlorite, epidote and quartz.

↓ Explore More Topics
In this Dossier

Metamorphic rocks in the context of Fold (geology)

In structural geology, a fold is a stack of originally planar surfaces, such as sedimentary strata, that are bent or curved ("folded") during permanent deformation. Folds in rocks vary in size from microscopic crinkles to mountain-sized folds. They occur as single isolated folds or in periodic sets (known as fold trains). Synsedimentary folds are those formed during sedimentary deposition.

Folds form under varied conditions of stress, pore pressure, and temperature gradient, as evidenced by their presence in soft sediments, the full spectrum of metamorphic rocks, and even as primary flow structures in some igneous rocks. A set of folds distributed on a regional scale constitutes a fold belt, a common feature of orogenic zones. Folds are commonly formed by shortening of existing layers, but may also be formed as a result of displacement on a non-planar fault (fault bend fold), at the tip of a propagating fault (fault propagation fold), by differential compaction or due to the effects of a high-level igneous intrusion e.g. above a laccolith.

↑ Return to Menu

Metamorphic rocks in the context of Magnetite

Magnetite is a mineral and one of the main iron ores, with the chemical formula FeFe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With the exception of extremely rare native iron deposits, it is the most magnetic of all the naturally occurring minerals on Earth. Naturally magnetized pieces of magnetite, called lodestone, will attract small pieces of iron, which is how ancient peoples first discovered the property of magnetism.

Magnetite is black or brownish-black with a metallic luster, has a Mohs hardness of 5–6 and leaves a black streak. Small grains of magnetite are very common in igneous and metamorphic rocks.

↑ Return to Menu

Metamorphic rocks in the context of Foliation (geology)

Foliation in geology refers to repetitive layering in metamorphic rocks. Each layer can be as thin as a sheet of paper, or over a meter in thickness. The word comes from the Latin folium, meaning "leaf", and refers to the sheet-like planar structure. It is caused by shearing forces (pressures pushing different sections of the rock in different directions), or differential pressure (higher pressure from one direction than in others). The layers form parallel to the direction of the shear, or perpendicular to the direction of higher pressure. Nonfoliated metamorphic rocks are typically formed in the absence of significant differential pressure or shear. Foliation is common in rocks affected by the regional metamorphic compression typical of areas of mountain belt formation (orogenic belts).

More technically, foliation is any penetrative planar fabric present in metamorphic rocks. Rocks exhibiting foliation include the standard sequence formed by the prograde metamorphism of mudrocks; slate, phyllite, schist and gneiss. The slatey cleavage typical of slate is due to the preferred orientation of microscopic phyllosilicate crystals. In gneiss, the foliation is more typically represented by compositional banding due to segregation of mineral phases. Foliated rock is also known as S-tectonite in sheared rock masses.

↑ Return to Menu

Metamorphic rocks in the context of Lithic fragment (geology)

Lithic fragments, or lithics, are pieces of other rocks that have been eroded down to sand size and now are sand grains in a sedimentary rock. They were first described and named (in their modern definitions) by Bill Dickinson in 1970. Lithic fragments can be derived from sedimentary, igneous or metamorphic rocks. A lithic fragment is defined using the Gazzi-Dickinson point-counting method and being in the sand-size fraction. Sand grains in sedimentary rocks that are fragments of larger rocks that are not identified using the Gazzi-Dickinson method are usually called rock fragments instead of lithic fragments. Sandstones rich in lithic fragments are called lithic sandstones.

↑ Return to Menu

Metamorphic rocks in the context of Izanagi plate

The Izanagi plate (named after the Shinto god Izanagi) was an ancient tectonic plate, which began subducting beneath the Okhotsk plate 130–100 Ma (million years ago). The rapid plate motion of the Izanagi plate caused northwest Japan and the outer zone of southwest Japan to drift northward. High-pressure metamorphic rocks were formed at the eastern margin of the drifting land mass in the Sanbagawa metamorphic belt, while low-pressure metamorphic rocks were formed at its western margin in the Abukuma metamorphic belt. At approximately 55 Ma, the Izanagi Plate was completely subducted and replaced by the western Pacific plate, which also subducted in a northwestern direction. Subduction-related magmatism took place near the Ryoke belt. No marked tectonics occurred in the Abukuma belt after the change of the subducted plate.

The discovery of an extinct JurassicCretaceous spreading system in the northwest Pacific led to the introduction of the extinct Kula plate in 1972. The Izanagi plate was subsequently introduced in 1982 to explain the geometry of this spreading system. Knowledge of the former Izanagi plate is limited to Mesozoic magnetic lineations on the Pacific plate that preserve the record of this subduction.

↑ Return to Menu

Metamorphic rocks in the context of Annite

Annite is a phyllosilicate mineral in the mica family. It has a chemical formula of KFe3AlSi3O10(OH)2. Annite is the iron end member of the biotite mica group, the iron rich analogue of magnesium rich phlogopite. Annite is monoclinic and contains tabular crystals and cleavage fragments with pseudohexagonal outlines. There are contact twins with composition surface {001} and twin axis {310}.

Annite was first described in 1868 for the first noted occurrence in Cape Ann, Rockport, Essex County, Massachusetts, US. It also occurs on Pikes Peak, El Paso County, Colorado. It occurs in igneous and metamorphic rocks that are deficient in magnesium and is associated with fluorite and zircon in the type locality.

↑ Return to Menu

Metamorphic rocks in the context of Illite

Illite, also called hydromica or hydromuscovite, is a group of closely related non-expanding clay minerals. Illite is a secondary mineral precipitate, and an example of a phyllosilicate, or layered alumino-silicate. Its structure is a 2:1 sandwich of silica tetrahedron (T) – alumina octahedron (O) – silica tetrahedron (T) layers. The space between this T-O-T sequence of layers is occupied by poorly hydrated potassium cations which are responsible for the absence of swelling. Structurally, illite is quite similar to muscovite with slightly more silicon, magnesium, iron, and water and slightly less tetrahedral aluminium and interlayer potassium. The chemical formula is given as (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2·(H2O)], but there is considerable ion (isomorphic) substitution. It occurs as aggregates of small monoclinic grey to white crystals. Due to the small size, positive identification usually requires x-ray diffraction or SEM-EDS (automated mineralogy) analysis. Illite occurs as an altered product of muscovite and feldspar in weathering and hydrothermal environments; it may be a component of sericite. It is common in sediments, soils, and argillaceous sedimentary rocks as well as in some low grade metamorphic rocks. The iron-rich member of the illite group, glauconite, in sediments can be differentiated by x-ray analysis.

The cation-exchange capacity (CEC) of illite is smaller than that of smectite but higher than that of kaolinite, typically around 20 – 30 meq/100 g.

↑ Return to Menu