Metabolic rate in the context of "Oligotrophic"

Play Trivia Questions online!

or

Skip to study material about Metabolic rate in the context of "Oligotrophic"

Ad spacer

⭐ Core Definition: Metabolic rate

Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. It is reported in energy units per unit time ranging from watt (joule/second) to ml O2/min or joule per hour per kg body mass J/(h·kg). Proper measurement requires a strict set of criteria to be met. These criteria include being in a physically and psychologically undisturbed state and being in a thermally neutral environment while in the post-absorptive state (i.e., not actively digesting food). In bradymetabolic animals, such as fish and reptiles, the equivalent term standard metabolic rate (SMR) applies. It follows the same criteria as BMR, but requires the documentation of the temperature at which the metabolic rate was measured. This makes BMR a variant of standard metabolic rate measurement that excludes the temperature data, a practice that has led to problems in defining "standard" rates of metabolism for many mammals.

Metabolism comprises the processes that the body needs to function. Basal metabolic rate is the amount of energy per unit of time that a person needs to keep the body functioning at rest. Some of those processes are breathing, blood circulation, controlling body temperature, cell growth, brain and nerve function, and contraction of muscles. Basal metabolic rate affects the rate that a person burns calories and ultimately whether that individual maintains, gains, or loses weight. The basal metabolic rate accounts for about 70% of the daily calorie expenditure by individuals. It is influenced by several factors. In humans, BMR typically declines by 1–2% per decade after age 20, mostly due to loss of fat-free mass, although the variability between individuals is high.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Metabolic rate in the context of Oligotrophic

An oligotroph is an organism that can live in an environment that offers very low levels of nutrients. They may be contrasted with copiotrophs, which prefer nutritionally rich environments. Oligotrophs are characterized by slow growth, low rates of metabolism, and generally low population density. Oligotrophic environments are those that offer little to sustain life. These environments include deep oceanic sediments, caves, glacial and polar ice, deep subsurface soil, aquifers, ocean waters, and leached soils.

Examples of oligotrophic organisms are the cave-dwelling olm; the bacterium "Candidatus Pelagibacter communis", which is the most abundant organism in the ocean (with an estimated 2 × 10 individuals in total); and lichens, with their extremely low metabolic rate.

↓ Explore More Topics
In this Dossier

Metabolic rate in the context of Thermal comfort

Thermal comfort is the condition of mind that expresses subjective satisfaction with the thermal environment. The human body can be viewed as a heat engine where food is the input energy. The human body will release excess heat into the environment, so the body can continue to operate. The heat transfer is proportional to temperature difference. In cold environments, the body loses more heat to the environment and in hot environments the body does not release enough heat. Both the hot and cold scenarios lead to discomfort. Maintaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC (heating, ventilation, and air conditioning) design engineers.

Thermal neutrality is maintained when the heat generated by human metabolism is allowed to dissipate, thus maintaining thermal equilibrium with the surroundings. The main factors that influence thermal neutrality are those that determine heat gain and loss, namely metabolic rate, clothing insulation, air temperature, mean radiant temperature, air speed and relative humidity. Psychological parameters, such as individual expectations, and physiological parameters also affect thermal neutrality. Neutral temperature is the temperature that can lead to thermal neutrality and it may vary greatly between individuals and depending on factors such as activity level, clothing, and humidity. People are highly sensitive to even small differences in environmental temperature. At 24 °C (75.2 °F), a difference of 0.38 °C (0.684 °F) can be detected between the temperature of two rooms.

↑ Return to Menu

Metabolic rate in the context of Hibernation

Hibernation is a state of minimal activity and metabolic reduction entered by some animal species. Hibernation is a seasonal heterothermy characterized by low body-temperature, slow breathing and heart-rate, and low metabolic rate. It is most commonly used to pass through winter months – called overwintering.

Although traditionally reserved for "deep" hibernators such as rodents, the term has been redefined to include animals such as bears and is now applied based on active metabolic suppression rather than any absolute decline in body temperature. Many experts believe that the processes of daily torpor and hibernation form a continuum and use similar mechanisms. The equivalent during the summer months is aestivation.

↑ Return to Menu

Metabolic rate in the context of Calories

The calorie is a unit of energy that originated from the caloric theory of heat. The large calorie, food calorie, dietary calorie, or kilogram calorie is defined as the amount of heat needed to raise the temperature of one liter of water by one degree Celsius (or one kelvin). The small calorie or gram calorie is defined as the amount of heat needed to cause the same increase in one milliliter of water. Thus, 1 large calorie is equal to 1,000 small calories.

In nutrition and food science, the term calorie and the symbol cal may refer to the large unit or to the small unit in different regions of the world. It is generally used in publications and package labels to express the energy value of foods in per serving or per weight, recommended dietary caloric intake, metabolic rates, etc. Some authors recommend the spelling Calorie and the symbol Cal (both with a capital C) if the large calorie is meant, to avoid confusion; however, this convention is often ignored.

↑ Return to Menu

Metabolic rate in the context of Thyroxine

Thyroxine, also known as T4, is a hormone produced by the thyroid gland. It is the primary form of thyroid hormone found in the blood and acts as a prohormone of the more active thyroid hormone, triiodothyronine (T3). Thyroxine and its active metabolites are essential for regulating metabolic rate, supporting heart and muscle function, promoting brain development, and maintaining bone health.

↑ Return to Menu

Metabolic rate in the context of Torpor

Torpor is a state of decreased physiological activity in an animal, usually marked by a reduced body temperature and metabolic rate. Torpor enables animals to survive periods of reduced food availability. The term "torpor" can refer to the time a hibernator spends at low body temperature, lasting days to weeks, or it can refer to a period of low body temperature and metabolism lasting less than 24 hours.

The word comes from the early 13th century, originating from the Latin, torpor, to be numb or sluggish.

↑ Return to Menu