Message passing in the context of Hooking


Message passing in the context of Hooking

Message passing Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Message passing in the context of "Hooking"


HINT:

👉 Message passing in the context of Hooking

In computer programming, hooking is a range of techniques used to alter or augment the behaviour of an operating system, of applications, or of other software components by intercepting function calls or messages or events passed between software components. Code that handles such intercepted function calls, events or messages is called a hook.

Hook methods are of particular importance in the template method pattern where common code in an abstract class can be augmented by custom code in a subclass. In this case each hook method is defined in the abstract class with an empty implementation which then allows a different implementation to be supplied in each concrete subclass.

↓ Explore More Topics
In this Dossier

Message passing in the context of Distributed application

Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers.

The components of a distributed system communicate and coordinate their actions by passing messages to one another in order to achieve a common goal. Three challenges of distributed systems are: maintaining concurrency of components, overcoming the lack of a global clock, and managing the independent failure of components. When a component of one system fails, the entire system does not fail. Examples of distributed systems vary from SOA-based systems to microservices to massively multiplayer online games to peer-to-peer applications. Distributed systems cost more than monolithic architectures, primarily due to increased needs for additional hardware, servers, gateways, firewalls, new subnets, proxies, and so on. Distributed systems can also suffer from fallacies of distributed computing. Conversely, a well-designed distributed system is more scalable, more durable, more changeable, and more fine-tuned than a monolithic application deployed on a single machine. According to Marc Brooker: "a system is scalable in the range where marginal cost of additional workload is nearly constant." Serverless technologies fit this definition but the total cost of ownership, and not just the infra cost must be considered.

View the full Wikipedia page for Distributed application
↑ Return to Menu

Message passing in the context of Dynamic dispatch

In computer science, dynamic dispatch is the process of selecting which implementation of a polymorphic operation (method or function) to call at run time. It is commonly employed in, and considered a prime characteristic of, object-oriented programming (OOP) languages and systems.

Object-oriented systems model a problem as a set of interacting objects that enact operations referred to by name. Polymorphism is the phenomenon wherein somewhat interchangeable objects each expose an operation of the same name but possibly differing in behavior. As an example, a File object and a Database object both have a StoreRecord method that can be used to write a personnel record to storage. Their implementations differ. A program holds a reference to an object which may be either a File object or a Database object. Which one it is may have been determined by a run-time setting, and at this stage, the program may not know or care which. When the program calls StoreRecord on the object, something needs to choose which behavior gets enacted. If one thinks of OOP as sending messages to objects, then in this example the program sends a StoreRecord message to an object of unknown type, leaving it to the run-time support system to dispatch the message to the right object. The object enacts whichever behavior it implements.

View the full Wikipedia page for Dynamic dispatch
↑ Return to Menu

Message passing in the context of Objective-C

Objective-C is a high-level general-purpose, object-oriented programming language that adds Smalltalk-style message passing (messaging) to the C programming language. Originally developed by Brad Cox and Tom Love in the early 1980s, it was selected by NeXT for its NeXTSTEP operating system. Due to Apple macOS’s direct lineage from NeXTSTEP, Objective-C was the standard language used, supported, and promoted by Apple for developing macOS and iOS applications (via their respective application programming interfaces (APIs), Cocoa and Cocoa Touch) from 1997, when Apple purchased NeXT, until the introduction of the Swift language in 2014.

Objective-C programs developed for non-Apple operating systems or that are not dependent on Apple's APIs may also be compiled for any platform supported by GNU GNU Compiler Collection (GCC) or LLVM/Clang.

View the full Wikipedia page for Objective-C
↑ Return to Menu

Message passing in the context of Method (computer programming)

A method in object-oriented programming (OOP) is a procedure associated with an object, and generally also a message. An object consists of state data and behavior; these compose an interface, which specifies how the object may be used. A method is a behavior of an object parametrized by a user.

Data is represented as properties of the object, and behaviors are represented as methods. For example, a Window object could have methods such as open and close, while its state (whether it is open or closed at any given point in time) would be a property.

View the full Wikipedia page for Method (computer programming)
↑ Return to Menu