Megaelectronvolt in the context of Geoneutrino


Megaelectronvolt in the context of Geoneutrino

Megaelectronvolt Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Megaelectronvolt in the context of "Geoneutrino"


HINT:

👉 Megaelectronvolt in the context of Geoneutrino

In nuclear and particle physics, a geoneutrino is a neutrino or antineutrino emitted during the decay of naturally occurring radionuclides in the Earth. Neutrinos, the lightest of the known subatomic particles, lack measurable electromagnetic properties and interact only via the weak nuclear force (when ignoring gravity). Matter is virtually transparent to neutrinos and consequently they travel, unimpeded, at near light speed through the Earth from their point of emission. Collectively, geoneutrinos carry integrated information about the abundances of their radioactive sources inside the Earth. A major objective of the emerging field of neutrino geophysics involves extracting geologically useful information (e.g., abundances of individual geoneutrino-producing elements and their spatial distribution in Earth's interior) from geoneutrino measurements. Analysts from the Borexino collaboration have been able to get to 53 events of neutrinos originating from the interior of the Earth.

Most geoneutrinos are electron antineutrinos originating in β
decay branches of K, Th and U. Together these decay chains account for more than 99% of the present-day radiogenic heat generated inside the Earth. Only geoneutrinos from Th and U decay chains are detectable by the inverse beta-decay mechanism on the free proton because these have energies above the corresponding threshold (1.8 MeV). In neutrino experiments, large underground liquid scintillator detectors record the flashes of light generated from this interaction. As of 2016 geoneutrino measurements at two sites, as reported by the KamLAND and Borexino collaborations, have begun to place constraints on the amount of radiogenic heating in the Earth's interior. A third detector (SNO+) is expected to start collecting data in 2017. JUNO experiment is under construction in Southern China. Another geoneutrino detecting experiment is planned at the China Jinping Underground Laboratory.

↓ Explore More Topics
In this Dossier

Megaelectronvolt in the context of Discovery of nuclear fission

Nuclear fission was discovered in December 1938 by chemists Otto Hahn and Fritz Strassmann and physicists Lise Meitner and Otto Robert Frisch. Fission is a nuclear reaction or radioactive decay process in which the nucleus of an atom splits into two or more smaller, lighter nuclei and often other particles. The fission process often produces gamma rays and releases a very large amount of energy, even by the energetic standards of radioactive decay. Scientists already knew about alpha decay and beta decay, but fission assumed great importance because the discovery that a nuclear chain reaction was possible led to the development of nuclear power and nuclear weapons. Hahn was awarded the 1944 Nobel Prize in Chemistry for the discovery of nuclear fission.

Hahn and Strassmann at the Kaiser Wilhelm Institute for Chemistry in Berlin bombarded uranium with slow neutrons and discovered that barium had been produced. Hahn suggested a bursting of the nucleus, but he was unsure of what the physical basis for the results were. They reported their findings by mail to Meitner in Sweden, who a few months earlier had fled Nazi Germany. Meitner and her nephew Frisch theorised, and then proved, that the uranium nucleus had been split and published their findings in Nature. Meitner calculated that the energy released by each disintegration was approximately 200 megaelectronvolts, and Frisch observed this. By analogy with the division of biological cells, he named the process "fission".

View the full Wikipedia page for Discovery of nuclear fission
↑ Return to Menu