In statistics, robust measures of scale are methods which quantify the statistical dispersion in a sample of numerical data while resisting outliers. These are contrasted with conventional or non-robust measures of scale, such as sample standard deviation, which are greatly influenced by outliers.
The most common such robust statistics are the interquartile range (IQR) and the median absolute deviation (MAD). Alternatives robust estimators have also been developed, such as those based on pairwise differences and biweight midvariance.