MeV in the context of "Megavoltage X-rays"

Play Trivia Questions online!

or

Skip to study material about MeV in the context of "Megavoltage X-rays"

Ad spacer

⭐ Core Definition: MeV

In physics, an electronvolt (symbol eV), also written as electron-volt and electron volt, is a unit of measurement equivalent to the amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in a vacuum. When used as a unit of energy, the numerical value of 1 eV expressed in unit of joules (symbol J) is equal to the numerical value of the charge of an electron in coulombs (symbol C). Under the 2019 revision of the SI, this sets 1 eV equal to the exact value 1.602176634×10 J.Historically, the electronvolt was devised as a standard unit of measure through its usefulness in electrostatic particle accelerator sciences, because a particle with electric charge q gains an energy E = qV after passing through a voltage of V.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 MeV in the context of Megavoltage X-rays

Megavoltage X-rays are produced by linear accelerators ("linacs") operating at voltages in excess of 1000 kV (1 MV) range, and therefore have an energy in the MeV range. The voltage in this case refers to the voltage used to accelerate electrons in the linear accelerator and indicates the maximum possible energy of the photons which are subsequently produced. They are used in medicine in external beam radiotherapy to treat neoplasms, cancer and tumors. Beams with a voltage range of 4-25 MV are used to treat deeply buried cancers because radiation oncologists find that they penetrate well to deep sites within the body. Lower energy x-rays, called orthovoltage X-rays, are used to treat cancers closer to the surface.

Megavoltage x-rays are preferred for the treatment of deep lying tumours as they are attenuated less than lower energy photons, and will penetrate further, with a lower skin dose. Megavoltage X-rays also have lower relative biological effectiveness than orthovoltage x-rays. These properties help to make megavoltage x-rays the most common beam energies typically used for radiotherapy in modern techniques such as IMRT.

↓ Explore More Topics
In this Dossier

MeV in the context of Helium nuclei

Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to the nucleus of a helium-4 atom. They are generally produced in the process of alpha decay but may also be produced in different ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α. Because they are identical to helium nuclei, they are also sometimes written as He or
2
He
indicating a helium ion with a +2 charge (missing its two electrons). Once the ion gains electrons from its environment, the alpha particle becomes a normal (electrically neutral) helium atom
2
He
.

Alpha particles have a net spin of zero. When produced in standard alpha radioactive decay, alpha particles generally have a kinetic energy of about 5 MeV and a velocity in the vicinity of 4% of the speed of light. They are a highly ionizing form of particle radiation, with low penetration depth (stopped by a few centimetres of air, or by the skin).

↑ Return to Menu

MeV in the context of Cosmic ray astronomy

Cosmic ray astronomy is a branch of observational astronomy where scientists attempt to identify and study the potential sources of extremely high-energy (ranging from 1 MeV to more than 1 EeV) charged particles called cosmic rays coming from outer space. These particles, which include protons (nucleus of hydrogen), electrons, positrons and atomic nuclei (mostly of helium, but potentially of all chemical elements), travel through space at nearly the speed of light (such as the ultra-high-energy "Oh-My-God particle") and provide valuable insights into the most energetic processes in the universe. Unlike other branches of observational astronomy, it uniquely relies on charged particles as carriers of information.

↑ Return to Menu

MeV in the context of Deuterium–tritium fusion

Deuterium–tritium fusion (D-T fusion) is a type of nuclear fusion in which one deuterium (H) nucleus (deuteron) fuses with one tritium (H) nucleus (triton), giving one helium-4 nucleus, one free neutron, and 17.6 MeV of total energy coming from both the neutron and helium. It is the best known fusion reaction for fusion power and thermonuclear weapons.

Tritium, one of the reactants for D-T fusion, is radioactive. In fusion reactors, a 'breeding blanket' made of lithium orthosilicate or other lithium-bearing ceramics, is placed on the walls of the reactor, as lithium, when exposed to energetic neutrons, will produce tritium.

↑ Return to Menu

MeV in the context of Neutrino decoupling

In Big Bang cosmology, neutrino decoupling was the epoch at which neutrinos ceased interacting with other types of matter, and thereby ceased influencing the dynamics of the universe at early times. Prior to decoupling, neutrinos were in thermal equilibrium with protons, neutrons and electrons, which was maintained through the weak interaction. Decoupling occurred approximately at the time when the rate of those weak interactions was slower than the rate of expansion of the universe. Alternatively, it was the time when the time scale for weak interactions became greater than the age of the universe at that time. Neutrino decoupling took place approximately one second after the Big Bang, when the temperature of the universe was approximately 10 billion kelvin, or 1 MeV.

As neutrinos rarely interact with matter, these neutrinos still exist today, analogous to the much later cosmic microwave background emitted during recombination, around 377,000 years after the Big Bang. They form the cosmic neutrino background (abbreviated CνB or CNB). The neutrinos from this event have a very low energy, around 10 times smaller than is possible with present-day direct detection. Even high energy neutrinos are notoriously difficult to detect, so the CNB may not be directly observed in detail for many years, if at all. However, Big Bang cosmology makes many predictions about the CNB, and there is very strong indirect evidence that the CNB exists.

↑ Return to Menu