Mathematical proof in the context of Automated theorem proving


Mathematical proof in the context of Automated theorem proving

Mathematical proof Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Mathematical proof in the context of "Automated theorem proving"


⭐ Core Definition: Mathematical proof

A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in all possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work.

Proofs employ logic expressed in mathematical symbols, along with natural language that usually admits some ambiguity. In most mathematical literature, proofs are written in terms of rigorous informal logic. Purely formal proofs, written fully in symbolic language without the involvement of natural language, are considered in proof theory. The distinction between formal and informal proofs has led to much examination of current and historical mathematical practice, quasi-empiricism in mathematics, and so-called folk mathematics, oral traditions in the mainstream mathematical community or in other cultures. The philosophy of mathematics is concerned with the role of language and logic in proofs, and mathematics as a language.

↓ Menu
HINT:

👉 Mathematical proof in the context of Automated theorem proving

Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major motivating factor for the development of computer science.

↓ Explore More Topics
In this Dossier

Mathematical proof in the context of Greek mathematics

Ancient Greek mathematics refers to the history of mathematical ideas and texts in Ancient Greece during classical and late antiquity, mostly from the 5th century BC to the 6th century AD. Greek mathematicians lived in cities spread around the shores of the ancient Mediterranean, from Anatolia to Italy and North Africa, but were united by Greek culture and the Greek language. The development of mathematics as a theoretical discipline and the use of deductive reasoning in proofs is an important difference between Greek mathematics and those of preceding civilizations.

The early history of Greek mathematics is obscure, and traditional narratives of mathematical theorems found before the fifth century BC are regarded as later inventions. It is now generally accepted that treatises of deductive mathematics written in Greek began circulating around the mid-fifth century BC, but the earliest complete work on the subject is Euclid's Elements, written during the Hellenistic period. The works of renown mathematicians Archimedes and Apollonius, as well as of the astronomer Hipparchus, also belong to this period. In the Imperial Roman era, Ptolemy used trigonometry to determine the positions of stars in the sky, while Nicomachus and other ancient philosophers revived ancient number theory and harmonics. During late antiquity, Pappus of Alexandria wrote his Collection, summarizing the work of his predecessors, while Diophantus' Arithmetica dealt with the solution of arithmetic problems by way of pre-modern algebra. Later authors such as Theon of Alexandria, his daughter Hypatia, and Eutocius of Ascalon wrote commentaries on the authors making up the ancient Greek mathematical corpus.

View the full Wikipedia page for Greek mathematics
↑ Return to Menu

Mathematical proof in the context of Mathematics

Mathematics is a field of study that discovers and organizes methods, theories, and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics).

Mathematics involves the description and manipulation of abstract objects that consist of either abstractions from nature or—in modern mathematics—purely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to prove the properties of objects through proofs, which consist of a succession of applications of deductive rules to already established results. These results, called theorems, include previously proved theorems, axioms, and—in case of abstraction from nature—some basic properties that are considered true starting points of the theory under consideration.

View the full Wikipedia page for Mathematics
↑ Return to Menu

Mathematical proof in the context of Pythagorean theorem

In mathematics, the Pythagorean theorem or Pythagoras's theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation:The theorem is named for the Greek philosopher Pythagoras, born around 570 BC. The theorem has been proved numerous times by many different methods – possibly the most for any mathematical theorem. The proofs are diverse, including both geometric proofs and algebraic proofs, with some dating back thousands of years.

View the full Wikipedia page for Pythagorean theorem
↑ Return to Menu

Mathematical proof in the context of Theorem

In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.

In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as theorems only the most important results, and use the terms lemma, proposition and corollary for less important theorems.

View the full Wikipedia page for Theorem
↑ Return to Menu

Mathematical proof in the context of Euclid's Elements

The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise written c. 300 BC by the Ancient Greek mathematician Euclid.

The Elements is the oldest extant large-scale deductive treatment of mathematics. Drawing on the works of earlier mathematicians such as Hippocrates of Chios, Eudoxus of Cnidus, and Theaetetus, the Elements is a collection in 13 books of definitions, postulates, geometric constructions, and theorems with their proofs that covers plane and solid Euclidean geometry, elementary number theory, and incommensurability. These include the Pythagorean theorem, Thales' theorem, the Euclidean algorithm for greatest common divisors, Euclid's theorem that there are infinitely many prime numbers, and the construction of regular polygons and polyhedra.

View the full Wikipedia page for Euclid's Elements
↑ Return to Menu

Mathematical proof in the context of Euclidean geometry

Euclidean geometry is a mathematical system attributed to Euclid, an ancient Greek mathematician, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. One of those is the parallel postulate which relates to parallel lines on a Euclidean plane. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.

The Elements begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.

View the full Wikipedia page for Euclidean geometry
↑ Return to Menu

Mathematical proof in the context of Conjecture

In mathematics, a conjecture is a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them.

View the full Wikipedia page for Conjecture
↑ Return to Menu

Mathematical proof in the context of Rigour

Rigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as mathematical proofs which must maintain consistent answers; or socially imposed, such as the process of defining ethics and law.

View the full Wikipedia page for Rigour
↑ Return to Menu

Mathematical proof in the context of Proof theory

Proof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

Some of the major areas of proof theory include structural proof theory, ordinal analysis, provability logic, proof-theoretic semantics, reverse mathematics, proof mining, automated theorem proving, and proof complexity. Much research also focuses on applications in computer science, linguistics, and philosophy.

View the full Wikipedia page for Proof theory
↑ Return to Menu

Mathematical proof in the context of Mathematical practice

Mathematical practice comprises the working practices of professional mathematicians: selecting theorems to prove, using informal notations to persuade themselves and others that various steps in the final proof are convincing, and seeking peer review and publication, as opposed to the end result of proven and published theorems.

Philip Kitcher has proposed a more formal definition of a mathematical practice, as a quintuple. His intention was primarily to document mathematical practice through its historical changes.

View the full Wikipedia page for Mathematical practice
↑ Return to Menu

Mathematical proof in the context of Physical art

Physical art, as contrasted with conceptual art, refers to art that entirely exists in physical reality, in space and time. Its ontological status is that it is a physical object. The art is concretely realized but may be abstract in nature. For example, a painting, sculpture, or performance exists in the physical world. This is contrasted to conceptual art, some but not all kinds of performance art, computer software, or objects of mathematical beauty, such as a mathematical proof, which do not exist in the mental world or in physical world, but have other ontological status, such as in Plato's world of ideals. Here, the art may be realized in the physical world, such as a mathematical proof written on a chalkboard, but refer to objects that exists in the mind as concepts, not physical objects. A music performance is physical, while the composition, like computer software, is not.

View the full Wikipedia page for Physical art
↑ Return to Menu

Mathematical proof in the context of Euclidean space

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his Elements, with the great innovation of proving all properties of the space as theorems, by starting from a few fundamental properties, called postulates, which either were considered as evident (for example, there is exactly one straight line passing through two points), or seemed impossible to prove (parallel postulate).

View the full Wikipedia page for Euclidean space
↑ Return to Menu

Mathematical proof in the context of Mathematical induction

Mathematical induction is a method for proving that a statement is true for every natural number , that is, that the infinitely many cases   all hold. This is done by first proving a simple case, then also showing that if we assume the claim is true for a given case, then the next case is also true. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder:

A proof by induction consists of two cases. The first, the base case, proves the statement for without assuming any knowledge of other cases. The second case, the induction step, proves that if the statement holds for any given case , then it must also hold for the next case . These two steps establish that the statement holds for every natural number . The base case does not necessarily begin with , but often with , and possibly with any fixed natural number , establishing the truth of the statement for all natural numbers .

View the full Wikipedia page for Mathematical induction
↑ Return to Menu

Mathematical proof in the context of Wiles's proof of Fermat's Last Theorem

Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were believed to be impossible to prove using previous knowledge by almost all mathematicians at the time.

Wiles first announced his proof on 23 June 1993 at a lecture in Cambridge entitled "Modular Forms, Elliptic Curves and Galois Representations". However, in September 1993 the proof was found to contain an error. One year later on 19 September 1994, in what he would call "the most important moment of [his] working life", Wiles stumbled upon a revelation that allowed him to correct the proof to the satisfaction of the mathematical community. The corrected proof was published in 1995 in the journal Annals of Mathematics in the form of two articles, one authored by Wiles and the other co-authored by Wiles and Richard Taylor. Together, the two papers are 129 pages long and consumed more than seven years of Wiles's research time.

View the full Wikipedia page for Wiles's proof of Fermat's Last Theorem
↑ Return to Menu

Mathematical proof in the context of Formal verification

In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification is a key incentive for formal specification of systems, and is at the core of formal methods.It represents an important dimension of analysis and verification in electronic design automation and is one approach to software verification. The use of formal verification enables the highest Evaluation Assurance Level (EAL7) in the framework of common criteria for computer security certification.

Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code in a programming language. Prominent examples of verified software systems include the CompCert verified C compiler and the seL4 high-assurance operating system kernel.

View the full Wikipedia page for Formal verification
↑ Return to Menu