Mathematical logic in the context of Gregory Chaitin


Mathematical logic in the context of Gregory Chaitin

Mathematical logic Study page number 1 of 9

Play TriviaQuestions Online!

or

Skip to study material about Mathematical logic in the context of "Gregory Chaitin"


⭐ Core Definition: Mathematical logic

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.

Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory showed that almost all ordinary mathematics can be formalized in terms of sets, although there are some theorems that cannot be proven in common axiom systems for set theory. Contemporary work in the foundations of mathematics often focuses on establishing which parts of mathematics can be formalized in particular formal systems (as in reverse mathematics) rather than trying to find theories in which all of mathematics can be developed.

↓ Menu
HINT:

In this Dossier

Mathematical logic in the context of Alfred North Whitehead

Alfred North Whitehead OM FRS FBA (15 February 1861 – 30 December 1947) was an English mathematician and philosopher. He created the philosophical school known as process philosophy, which has been applied in a wide variety of disciplines, including ecology, theology, education, physics, biology, economics, and psychology.

In his early career Whitehead wrote primarily on mathematics, logic, and physics. He wrote the three-volume Principia Mathematica (1910–1913), with his former student Bertrand Russell. Principia Mathematica is considered one of the twentieth century's most important works in mathematical logic, and placed 23rd in a list of the top 100 English-language nonfiction books of the twentieth century by Modern Library.

View the full Wikipedia page for Alfred North Whitehead
↑ Return to Menu

Mathematical logic in the context of Lewis Carroll

Charles Lutwidge Dodgson (27 January 1832 – 14 January 1898), better known by his pen name Lewis Carroll, was an English author, poet, mathematician, photographer and reluctant Anglican deacon. His most notable works are Alice's Adventures in Wonderland (1865) and its sequel Through the Looking-Glass (1871), some of the most important examples of Victorian literature. He was noted for his facility with word play, logic, and fantasy. His poems Jabberwocky (1871) and The Hunting of the Snark (1876) are classified in the genre of literary nonsense. Some of Alice's nonsensical wonderland logic reflects his published work on mathematical logic.

Carroll came from a family of high-church Anglicans, and pursued his clerical training at Christ Church, Oxford, where he lived for most of his life as a scholar, teacher and (necessarily for his academic fellowship at the time) Anglican deacon. Alice Liddell – a daughter of Henry Liddell, the Dean of Christ Church – is widely identified as the original inspiration for Alice in Wonderland, though Carroll always denied this.

View the full Wikipedia page for Lewis Carroll
↑ Return to Menu

Mathematical logic in the context of Set theory

Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.

The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of naive set theory. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied.

View the full Wikipedia page for Set theory
↑ Return to Menu

Mathematical logic in the context of Proof system

In mathematical logic, a proof calculus or a proof system is built to prove statements.

View the full Wikipedia page for Proof system
↑ Return to Menu

Mathematical logic in the context of Logical connective

In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is an operator that combines or modifies one or more logical variables or formulas, similarly to how arithmetic connectives like and combine or negate arithmetic expressions. For instance, in the syntax of propositional logic, the binary connective (meaning "or") can be used to join the two logical formulas and , producing the complex formula .

Unlike in algebra, there are many symbols in use for each logical connective. The table "Logical connectives" shows examples.

View the full Wikipedia page for Logical connective
↑ Return to Menu

Mathematical logic in the context of Material conditional

The material conditional (also known as material implication) is a binary operation commonly used in logic. When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false.

Material implication is used in all the basic systems of classical logic as well as some nonclassical logics. It is assumed as a model of correct conditional reasoning within mathematics and serves as the basis for commands in many programming languages. However, many logics replace material implication with other operators such as the strict conditional and the variably strict conditional. Due to the paradoxes of material implication and related problems, material implication is not generally considered a viable analysis of conditional sentences in natural language.

View the full Wikipedia page for Material conditional
↑ Return to Menu

Mathematical logic in the context of Principia Mathematica

The Principia Mathematica (often abbreviated PM) is a three-volume work on the foundations of mathematics written by the mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. In 1925–1927, it appeared in a second edition with an important Introduction to the Second Edition, an Appendix A that replaced ✱9 with a new Appendix B and Appendix C. PM was conceived as a sequel to Russell's 1903 The Principles of Mathematics, but as PM states, this became an unworkable suggestion for practical and philosophical reasons: "The present work was originally intended by us to be comprised in a second volume of Principles of Mathematics ... But as we advanced, it became increasingly evident that the subject is a very much larger one than we had supposed; moreover on many fundamental questions which had been left obscure and doubtful in the former work, we have now arrived at what we believe to be satisfactory solutions."

PM, according to its introduction, had three aims: (1) to analyse to the greatest possible extent the ideas and methods of mathematical logic and to minimise the number of primitive notions, axioms, and inference rules; (2) to precisely express mathematical propositions in symbolic logic using the most convenient notation that precise expression allows; (3) to solve the paradoxes that plagued logic and set theory at the turn of the 20th century, like Russell's paradox.

View the full Wikipedia page for Principia Mathematica
↑ Return to Menu

Mathematical logic in the context of Soundness

In logic and deductive reasoning, an argument is sound if it is both valid in form and has no false premises. Soundness has a related meaning in mathematical logic, wherein a formal system of logic is sound if and only if every well-formed formula that can be proven in the system is logically valid with respect to the logical semantics of the system.

View the full Wikipedia page for Soundness
↑ Return to Menu

Mathematical logic in the context of Proof theory

Proof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

Some of the major areas of proof theory include structural proof theory, ordinal analysis, provability logic, proof-theoretic semantics, reverse mathematics, proof mining, automated theorem proving, and proof complexity. Much research also focuses on applications in computer science, linguistics, and philosophy.

View the full Wikipedia page for Proof theory
↑ Return to Menu

Mathematical logic in the context of Peano arithmetic

In mathematical logic, the Peano axioms (/piˈɑːn/, [peˈaːno]), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

The axiomatization of arithmetic provided by Peano axioms is commonly called Peano arithmetic.

View the full Wikipedia page for Peano arithmetic
↑ Return to Menu

Mathematical logic in the context of Analytic philosophy

Analytic philosophy is a broad movement and methodology within contemporary Western philosophy, especially anglophone philosophy, focused on: analysis as a philosophical method; clarity of prose; rigor in arguments; and making use of formal logic, mathematics, and to a lesser degree the natural sciences. It is further characterized by the linguistic turn, or a concern with language and meaning. Analytic philosophy has developed several new branches of philosophy and logic, notably philosophy of language, philosophy of mathematics, philosophy of science, modern predicate logic and mathematical logic.

The proliferation of analysis in philosophy began around the turn of the 20th century and has been dominant since the latter half of the 20th century. Central figures in its historical development are Gottlob Frege, Bertrand Russell, G. E. Moore, and Ludwig Wittgenstein. Other important figures in its history include Franz Brentano, the logical positivists (especially Rudolf Carnap), the ordinary language philosophers, W. V. O. Quine, and Karl Popper. After the decline of logical positivism, Saul Kripke, David Lewis, and others led a revival in metaphysics.

View the full Wikipedia page for Analytic philosophy
↑ Return to Menu

Mathematical logic in the context of Tautology (logic)

In mathematical logic, a tautology (from Ancient Greek: ταυτολογία) is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. It is a logical truth. For example, a formula that states "the ball is green or the ball is not green" is always true, regardless of what a ball is and regardless of its colour. Tautology is usually, though not always, used to refer to valid formulas of propositional logic.

The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false.

View the full Wikipedia page for Tautology (logic)
↑ Return to Menu

Mathematical logic in the context of Law (mathematics)

In mathematics, a law is a formula that is always true within a given context. Laws describe a relationship, between two or more expressions or terms (which may contain variables), usually using equality or inequality, or between formulas themselves, for instance, in mathematical logic. For example, the formula is true for all real numbers a, and is therefore a law. Laws over an equality are called identities. For example, and are identities. Mathematical laws are distinguished from scientific laws which are based on observations, and try to describe or predict a range of natural phenomena. The more significant laws are often called theorems.

View the full Wikipedia page for Law (mathematics)
↑ Return to Menu

Mathematical logic in the context of Russell's paradox

In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician, Bertrand Russell, in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions.

According to the unrestricted comprehension principle, for any sufficiently well-defined property, there is the set of all and only the objects that have that property. Let R be the set of all sets that are not members of themselves. (This set is sometimes called "the Russell set".) If R is not a member of itself, then its definition entails that it is a member of itself; yet, if it is a member of itself, then it is not a member of itself, since it is the set of all sets that are not members of themselves. The resulting contradiction is Russell's paradox. In symbols:

View the full Wikipedia page for Russell's paradox
↑ Return to Menu

Mathematical logic in the context of Predicate (mathematical logic)

In logic, a predicate is a non-logical symbol that represents a property or a relation, though, formally, does not need to represent anything at all. For instance, in the first-order formula , the symbol is a predicate that applies to the individual constant which evaluates to either true or false. Similarly, in the formula , the symbol is a predicate that applies to the individual constants and . Predicates are considered a primitive notion of first-order, and higher-order logic and are therefore not defined in terms of other more basic concepts.

The term derives from the grammatical term "predicate", meaning a word or phrase that represents a property or relation.

View the full Wikipedia page for Predicate (mathematical logic)
↑ Return to Menu

Mathematical logic in the context of Discrete mathematics

Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a one-to-one correspondence (bijection) with natural numbers), rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets (finite sets or sets with the same cardinality as the natural numbers). However, there is no exact definition of the term "discrete mathematics".

The set of objects studied in discrete mathematics can be finite or infinite. The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deal with finite sets, particularly those areas relevant to business.

View the full Wikipedia page for Discrete mathematics
↑ Return to Menu

Mathematical logic in the context of Compositionality

In semantics, mathematical logic and related disciplines, the principle of compositionality is the principle that the meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them. The principle is also called Frege's principle, because Gottlob Frege is widely credited for the first modern formulation of it. However, the principle has never been explicitly stated by Frege, and arguably it was already assumed by George Boole decades before Frege's work.

The principle of compositionality (also known as semantic compositionalism) is highly debated in linguistics. Among its most challenging problems there are the issues of contextuality, the non-compositionality of idiomatic expressions, and the non-compositionality of quotations.

View the full Wikipedia page for Compositionality
↑ Return to Menu

Mathematical logic in the context of Well-formed formula

In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language.

The abbreviation wff is pronounced "woof", or sometimes "wiff", "weff", or "whiff".

View the full Wikipedia page for Well-formed formula
↑ Return to Menu

Mathematical logic in the context of Consistency proof

In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences (informally "axioms") and the set of closed sentences provable from under some (specified, possibly implicitly) formal deductive system. The set of axioms is consistent when there is no formula such that and . A trivial theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a model, i.e., there exists an interpretation under which all axioms in the theory are true. This is what consistent meant in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.

In a sound formal system, every satisfiable theory is consistent, but the converse does not hold. If there exists a deductive system for which these semantic and syntactic definitions are equivalent for any theory formulated in a particular deductive logic, the logic is called complete. The completeness of the propositional calculus was proved by Paul Bernays in 1918 and Emil Post in 1921, while the completeness of (first order) predicate calculus was proved by Kurt Gödel in 1930, and consistency proofs for arithmetics restricted with respect to the induction axiom schema were proved by Ackermann (1924), von Neumann (1927) and Herbrand (1931). Stronger logics, such as second-order logic, are not complete.

View the full Wikipedia page for Consistency proof
↑ Return to Menu