Mathematical constant in the context of "Physical constant"

⭐ In the context of physical constants, a mathematical constant is considered…

Ad spacer

⭐ Core Definition: Mathematical constant

A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and π occurring in such diverse contexts as geometry, number theory, statistics, and calculus.

Some constants arise naturally by a fundamental principle or intrinsic property, such as the ratio between the circumference and diameter of a circle (π). Other constants are notable more for historical reasons than for their mathematical properties. The more popular constants have been studied throughout the ages and computed to many decimal places.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Mathematical constant in the context of Physical constant

A physical constant, sometimes called a fundamental physical constant or universal constant, is a physical quantity that cannot be explained by a theory and therefore must be measured experimentally. It is distinct from a mathematical constant, which has a fixed numerical value, but does not directly involve any physical measurement.

There are many physical constants in science, some of the most widely recognized being the speed of light in vacuum c, the gravitational constant G, the Planck constant h, the electric constant ε0, and the elementary charge e. Physical constants can take many dimensional forms: the speed of light has dimension of length divided by time (TL), while the proton-to-electron mass ratio is dimensionless.

↓ Explore More Topics
In this Dossier

Mathematical constant in the context of Approximations of π

Approximations for the mathematical constant pi (π) in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.

Further progress was not made until the 14th century, when Madhava of Sangamagrama developed approximations correct to eleven and then thirteen digits. Jamshīd al-Kāshī achieved sixteen digits next. Early modern mathematicians reached an accuracy of 35 digits by the beginning of the 17th century (Ludolph van Ceulen), and 126 digits by the 19th century (Jurij Vega).

↑ Return to Menu

Mathematical constant in the context of Pi

The number π (/p/ ; spelled out as pi) is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter. It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.

The number π is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an algebraic equation involving only finite sums, products, powers, and integers. The transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of π appear to be randomly distributed, but no proof of this conjecture has been found.

↑ Return to Menu

Mathematical constant in the context of Imaginary unit

The imaginary unit, usually denoted by i, is a mathematical constant that is a solution to the quadratic equation x = −1, which is not solved by any real number. Any real-number multiple of the imaginary unit is called an imaginary number.

Combining the real numbers with the imaginary unit using addition and multiplication generates a new number system called the complex numbers, which consists of all numbers of the form a + bi with real numbers a and b.

↑ Return to Menu

Mathematical constant in the context of Constant (mathematics)

In mathematics, the word constant conveys multiple meanings. As an adjective, it refers to non-variance (i.e. unchanging with respect to some other value); as a noun, it has two different meanings:

For example, a general quadratic function is commonly written as:

↑ Return to Menu

Mathematical constant in the context of Euler's number

The number e is a mathematical constant, approximately equal to 2.71828, that is the base of the natural logarithm and exponential function. It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted . Alternatively, e can be called Napier's constant after John Napier. The Swiss mathematician Jacob Bernoulli discovered the constant while studying compound interest.

The number e is of great importance in mathematics, alongside 0, 1, π, and i. All five appear in one formulation of Euler's identity and play important and recurring roles across mathematics. Like the constant π, e is irrational, meaning that it cannot be represented as a ratio of integers. Moreover, it is transcendental, meaning that it is not a root of any non-zero polynomial with rational coefficients. To 30 decimal places, the value of e is:

↑ Return to Menu

Mathematical constant in the context of Lemniscate of Bernoulli

In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points F1 and F2, known as foci, at distance 2c from each other as the locus of points P so that . The curve has a shape similar to the numeral 8 and to the symbol. Its name is from lemniscatus, which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4.

This lemniscate was first described in 1694 by Jakob Bernoulli as a modification of an ellipse, which is the locus of points for which the sum of the distances to each of two fixed focal points is a constant. A Cassini oval, by contrast, is the locus of points for which the product of these distances is constant. In the case where the curve passes through the point midway between the foci, the oval is a lemniscate of Bernoulli.

↑ Return to Menu