Materials engineering in the context of "Engineering"

⭐ In the context of Engineering, Materials Engineering is considered a field primarily focused on…

Ad spacer

⭐ Core Definition: Materials engineering

Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries.

The intellectual origins of materials science stem from the Age of Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials science still incorporates elements of physics, chemistry, and engineering. As such, the field was long considered by academic institutions as a sub-field of these related fields. Beginning in the 1940s, materials science began to be more widely recognized as a specific and distinct field of science and engineering, and major technical universities around the world created dedicated schools for its study.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Materials engineering in the context of Engineering

Engineering is the practice of using natural science, mathematics, and the engineering design process to solve problems within technology, increase efficiency and productivity, and improve systems. The traditional disciplines of engineering are civil, mechanical, electrical, and chemical. The academic discipline of engineering encompasses a broad range of more specialized subfields, and each can have a more specific emphasis for applications of mathematics and science. In turn, modern engineering practice spans multiple fields of engineering, which include designing and improving infrastructure, machinery, vehicles, electronics, materials, and energy systems. For related terms, see glossary of engineering.

As a human endeavor, engineering has existed since ancient times, starting with the six classic simple machines. Examples of large-scale engineering projects from antiquity include impressive structures like the pyramids, elegant temples such as the Parthenon, and water conveyances like hulled watercraft, canals, and the Roman aqueduct. Early machines were powered by humans and animals, then later by wind. Machines of war were invented for siegecraft. In Europe, the scientific and industrial revolutions advanced engineering into a scientific profession and resulted in continuing technological improvements. The steam engine provided much greater power than animals, leading to mechanical propulsion for ships and railways. Further scientific advances resulted in the application of engineering to electrical, chemical, and aerospace requirements, plus the use of new materials for greater efficiencies.

↓ Explore More Topics
In this Dossier

Materials engineering in the context of Engineering physics

Engineering physics (EP), sometimes engineering science, is the field of study combining pure science disciplines (such as physics, mathematics, chemistry) and engineering disciplines (computer, nuclear, electrical, aerospace, medical, materials, mechanical, etc.).

In many languages, the term technical physics is also used.It has been used since 1861, after being introduced by the German physics teacher J. FrickΒ [de] in his publications.

↑ Return to Menu

Materials engineering in the context of Robotics

Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots.

Within mechanical engineering, robotics is the design and construction of the physical structures of robots, while in computer science, robotics focuses on robotic automation algorithms. Other disciplines contributing to robotics include electrical, control, software, information, electronic, telecommunication, computer, mechatronic, and materials engineering.

↑ Return to Menu