Material in the context of Biaxial tensile testing


Material in the context of Biaxial tensile testing

Material Study page number 1 of 7

Play TriviaQuestions Online!

or

Skip to study material about Material in the context of "Biaxial tensile testing"


⭐ Core Definition: Material

A material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geological origin or biological function. Materials science is the study of materials, their properties, and their applications.

Raw materials can be processed in different ways to influence their properties, by purification, shaping or the introduction of other materials. New materials can be produced from raw materials by synthesis.

↓ Menu
HINT:

In this Dossier

Material in the context of List of art media

Media, or mediums, are the core types of material (or related other tools) used by an artist, composer, designer, etc. to create a work of art. For example, a visual artist may broadly use the media of painting or sculpting, which themselves have more specific media within them, such as watercolor paints or marble.

The following is a list of artistic categories and the media used within each category:

View the full Wikipedia page for List of art media
↑ Return to Menu

Material in the context of Textile

Textile is an umbrella term that includes various fibre-based materials, including fibres, yarns, filaments, threads, and different types of fabric. At first, the word "textiles" only referred to woven fabrics. However, weaving is not the only manufacturing method, and many other methods were later developed to form textile structures based on their intended use. Knitting and non-woven are other popular types of fabric manufacturing. In the contemporary world, textiles satisfy the material needs for versatile applications, from simple daily clothing to bulletproof jackets, spacesuits, and doctor's gowns.

Textiles are divided into two groups: consumer textiles for domestic purposes and technical textiles. In consumer textiles, aesthetics and comfort are the most important factors, while in technical textiles, functional properties are the priority. The durability of textiles is an important property, with common cotton or blend garments (such as t-shirts) able to last twenty years or more with regular use and care.

View the full Wikipedia page for Textile
↑ Return to Menu

Material in the context of Ceramic

A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick.

The earliest ceramics made by humans were fired clay bricks used for building house walls and other structures. Other pottery objects such as pots, vessels, vases and figurines were made from clay, either by itself or mixed with other materials like silica, hardened by sintering in fire. Later, ceramics were glazed and fired to create smooth, colored surfaces, decreasing porosity through the use of glassy, amorphous ceramic coatings on top of the crystalline ceramic substrates. Ceramics now include domestic, industrial, and building products, as well as a wide range of materials developed for use in advanced ceramic engineering, such as semiconductors.

View the full Wikipedia page for Ceramic
↑ Return to Menu

Material in the context of Metal

A metal (from Ancient Greek μέταλλον (métallon) 'mine, quarry, metal') is a material that, when polished or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. These properties are all associated with having electrons available at the Fermi level, as opposed to nonmetallic materials which do not. Metals are typically ductile (can be drawn into a wire) and malleable (can be shaped via hammering or pressing).

A metal may be a chemical element such as iron; an alloy such as stainless steel; or a molecular compound such as polymeric sulfur nitride. The general science of metals is called metallurgy, a subtopic of materials science; aspects of the electronic and thermal properties are also within the scope of condensed matter physics and solid-state chemistry, it is a multidisciplinary topic. In colloquial use materials such as steel alloys are referred to as metals, while others such as polymers, wood or ceramics are nonmetallic materials.

View the full Wikipedia page for Metal
↑ Return to Menu

Material in the context of Materialism

Materialism is a form of philosophical monism in metaphysics, according to which matter is the fundamental substance in nature, and all things, including mental states and consciousness, are results of material interactions. According to philosophical materialism, mind and consciousness are caused by physical processes, such as the neurochemistry of the human brain and nervous system, without which they cannot exist. Materialism directly contrasts with monistic idealism, according to which consciousness is the fundamental substance of nature.

Materialism is closely related to physicalism—the view that all that exists is ultimately physical. Philosophical physicalism has evolved from materialism with the theories of the physical sciences to incorporate forms of physicality in addition to ordinary matter (e.g. spacetime, physical energies and forces, and exotic matter). Thus, some prefer the term physicalism to materialism, while others use them as synonyms. Materialism is also related to naturalism—the position that only natural laws and forces operate in the universe.

View the full Wikipedia page for Materialism
↑ Return to Menu

Material in the context of Job

Work or labour (labor in American English) is the intentional activity people perform to support the needs and desires of themselves, other people, and/or organizations. In the context of economics, work can be seen as the human activity that contributes (along with other factors of production) towards the goods and services within an economy.

Work has existed in all human societies, either as paid or unpaid work, from gathering natural resources by hand in hunter-gatherer groups to operating complex technologies that substitute for physical or even mental effort within an agricultural, industrial, or post-industrial society. One's regular participation or role in work is an occupation, or job. All but the simplest tasks in any work require specific skills, tools, and other resources, such as material for manufacturing goods. Humanity has developed a variety of institutions for group coordination of work, such as government programs, nonprofit organizations, cooperatives, and corporations.

View the full Wikipedia page for Job
↑ Return to Menu

Material in the context of Production (economics)

Production is the process of combining various inputs, both material (such as metal, wood, glass, or plastics) and immaterial (such as plans, or knowledge) in order to create output. Ideally, this output will be a good or service which has value and contributes to the utility of individuals. The area of economics that focuses on production is called production theory, and it is closely related to the consumption (or consumer) theory of economics.

The production process and output directly result from productively utilising the original inputs (or factors of production). Known as land, labor, capital and entrepreneurship, these are deemed the four fundamental factors of production. These primary inputs are not significantly altered in the output process, nor do they become a whole component in the product. Under classical economics, materials and energy are categorised as secondary factors as they are byproducts of land, labour and capital. Delving further, primary factors encompass all of the resourcing involved, such as land, which includes the natural resources above and below the soil. However, there is a difference between human capital and labour. In addition to the common factors of production, in different economic schools of thought, entrepreneurship and technology are sometimes considered evolved factors in production. It is common practice that several forms of controllable inputs are used to achieve the output of a product. The production function assesses the relationship between the inputs and the quantity of output.

View the full Wikipedia page for Production (economics)
↑ Return to Menu

Material in the context of Quantum chemistry

Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.

Chemists rely heavily on spectroscopy through which information regarding the quantization of energy on a molecular scale can be obtained. Common methods are infra-red (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning probe microscopy. Quantum chemistry may be applied to the prediction and verification of spectroscopic data as well as other experimental data.

View the full Wikipedia page for Quantum chemistry
↑ Return to Menu

Material in the context of Efficiency

Efficiency is the often measurable ability to avoid making mistakes or wasting materials, energy, efforts, money, and time while performing a task. In a more general sense, it is the ability to do things well, successfully, and without waste.

In more mathematical or scientific terms, it signifies the level of performance that uses the least amount of inputs to achieve the highest amount of output. It often specifically comprises the capability of a specific application of effort to produce a specific outcome with a minimum amount or quantity of waste, expense, or unnecessary effort. Efficiency refers to very different inputs and outputs in different fields and industries. In 2019, the European Commission said: "Resource efficiency means using the Earth's limited resources in a sustainable procent manner while minimising impacts on the environment. It allows us to create more with less and to deliver greater value with less input."

View the full Wikipedia page for Efficiency
↑ Return to Menu

Material in the context of Silica

Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula SiO2, commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant families of materials, existing as a compound of several minerals and as a synthetic product. Examples include fused quartz, fumed silica, opal, and aerogels. It is used in structural materials, microelectronics, and as components in the food and pharmaceutical industries. All forms are white or colorless, although impure samples can be colored.

Silicon dioxide is a common fundamental constituent of glass.

View the full Wikipedia page for Silica
↑ Return to Menu

Material in the context of Fuel

Fuel are any materials that can react with other substances to release energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but has since also been applied to other sources of heat energy, such as nuclear energy (via nuclear fission and nuclear fusion).

The heat energy released by reactions of fuels can be converted into mechanical energy via a heat engine. Other times, the heat itself is valued for warmth, cooking, or industrial processes, as well as the illumination that accompanies combustion. Fuels are also used in the cells of organisms in a process known as cellular respiration, where organic molecules are oxidized to release usable energy. Hydrocarbons and related organic molecules are by far the most common source of fuel used by humans, but other substances, including radioactive metals, are also utilized.

View the full Wikipedia page for Fuel
↑ Return to Menu

Material in the context of Photon

A photon (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light') is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can only move at one speed, the speed of light measured in vacuum. The photon belongs to the class of boson particles.

As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While Planck was trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, he proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain the photoelectric effect, Einstein introduced the idea that light itself is made of discrete units of energy. In 1926, Gilbert N. Lewis popularized the term photon for these energy units. Subsequently, many other experiments validated Einstein's approach.

View the full Wikipedia page for Photon
↑ Return to Menu

Material in the context of In situ

In situ is a Latin phrase meaning 'in place' or 'on site', derived from in ('in') and situ (ablative of situs, lit.'place'). The term refers to studying or working with something in its natural or original location rather than moving it elsewhere. This approach preserves environmental factors and relationships that might be lost when materials or specimens are relocated to controlled settings. In comparison, ex situ ('out of place') methods involve removing materials or specimens for study, preservation, or modification under controlled conditions, often at the expense of their original context. The earliest recorded use of in situ in English dates back to the mid-17th century. Its use in scientific literature expanded from the late 19th century onward, beginning in medicine and engineering, and later spreading to a wide range of disciplines.

The natural sciences typically use in situ methods to study phenomena in their original context. In geology, field studies of soil composition and rock formations may provide direct insights into Earth's processes. Biologists observe organisms in their natural habitats to understand behaviors and ecological interactions that cannot be reproduced in a laboratory. In chemistry and experimental physics, in situ techniques make it possible to watch substances and reactions as they occur, capturing transient phenomena in real time.

View the full Wikipedia page for In situ
↑ Return to Menu