Maniraptora in the context of "Scansoriopterygids"

Play Trivia Questions online!

or

Skip to study material about Maniraptora in the context of "Scansoriopterygids"

Ad spacer

⭐ Core Definition: Maniraptora

Maniraptora is a clade of coelurosaurian dinosaurs which includes birds and the non-avian dinosaurs that were more closely related to them than to Ornithomimus velox. It contains the major subgroups Avialae, Dromaeosauridae, Troodontidae, Oviraptorosauria, and Therizinosauria. Ornitholestes and the Alvarezsauroidea are also often included. Together with the next closest sister group, the Ornithomimosauria, Maniraptora comprises the more inclusive clade Maniraptoriformes. Maniraptorans first appear in the fossil record during the Jurassic Period (see Eshanosaurus), and survive today as living birds.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Maniraptora in the context of Scansoriopterygids

Scansoriopterygidae (meaning "climbing wings") is an extinct family of climbing and gliding maniraptoran dinosaurs. Scansoriopterygids are known from five well-preserved fossils, representing four species, unearthed in the Tiaojishan Formation fossil beds (dating to the mid-late Jurassic Period) of Liaoning and Hebei, China.

Scansoriopteryx heilmanni (and its likely synonym Epidendrosaurus ninchengensis) was the first non-avian dinosaur found that had clear adaptations to an arboreal or semi-arboreal lifestyle–it is likely that they spent much of their time in trees. Both specimens showed features indicating they were juveniles, which made it difficult to determine their exact relationship to other non-avian dinosaurs and birds. It was not until the description of Epidexipteryx hui in 2008 that a subadult specimen was known. In 2015, the discovery of an adult specimen belonging to the species Yi qi showed that scansoriopterygids were not only climbers but also had adaptations that could have been used for gliding flight. The recently discovered (in 2019) Ambopteryx also supports this. The earlier described Pedopenna may also be a member of this clade.

↓ Explore More Topics
In this Dossier

Maniraptora in the context of Theropod

Theropoda (/θɪəˈrɒpədə/; from ancient Greek θηρίο- ποδός [θηρίον, (therion) "wild beast"; πούς, ποδός (pous, podos) "foot"]) is one of the three major clades of dinosaur, alongside Ornithischia and Sauropodomorpha. Theropods, both extant and extinct, are characterized by hollow bones and three toes and claws on each limb. They are generally classed as a group of saurischian dinosaurs, placing them closer to sauropodomorphs than to ornithischians. They were ancestrally carnivorous, although a number of theropod groups evolved to become herbivores and omnivores. Members of the subgroup Coelurosauria were most likely all covered with feathers, and it is possible that they were also present in other theropods. In the Jurassic, birds evolved from small specialized coelurosaurian theropods, and are currently represented by about 11,000 living species, making theropods the only group of dinosaurs alive today.

Theropods first appeared during the Carnian age of the Late Triassic period 231.4 million years ago (Ma) and included the majority of large terrestrial carnivores from the Early Jurassic until the end of the Cretaceous, about 66 Ma, including the largest terrestrial carnivorous animals ever, such as Tyrannosaurus and Giganotosaurus, though non-avian theropods exhibited considerable size diversity, with some non-avian theropods like scansoriopterygids being no bigger than small birds.

↑ Return to Menu

Maniraptora in the context of Coelurosauria

Coelurosauria (/sɪˌljʊərəˈsɔːri.ə/; from Greek, meaning "hollow-tailed lizards") is the clade containing all theropod dinosaurs more closely related to birds than to carnosaurs.

Coelurosauria is a subgroup of theropod dinosaurs that includes compsognathids, tyrannosauroids, ornithomimosaurs, maniraptorans, and over the recent years, megaraptorans (although their position within the clade is unclear). Maniraptora includes birds, the only known dinosaur group alive today. In the past, Coelurosauria was used to refer to all small theropods, but this classification has since been amended.

↑ Return to Menu

Maniraptora in the context of Origin of birds

The scientific question of which larger group of animals birds evolved within has traditionally been called the "origin of birds". The present scientific consensus is that birds are a group of maniraptoran theropod dinosaurs that originated during the Mesozoic era.

A close relationship between birds and dinosaurs was first proposed in the nineteenth century after the discovery of the primitive bird Archaeopteryx in Germany. Birds and extinct non-avian dinosaurs share many unique skeletal traits. Moreover, fossils of more than thirty species of non-avian dinosaur with preserved feathers have been collected. There are even very small dinosaurs, such as Microraptor and Anchiornis, which have long, vaned arm and leg feathers forming wings. The Jurassic basal avialan Pedopenna also shows these long foot feathers. Paleontologist Lawrence Witmer concluded in 2009 that this evidence is sufficient to demonstrate that avian evolution went through a four-winged stage. Fossil evidence also demonstrates that birds and dinosaurs shared features such as hollow, pneumatized bones, gastroliths in the digestive system, nest-building, and brooding behaviors.

↑ Return to Menu

Maniraptora in the context of Oviraptorosauria

Oviraptorosaurs ("egg thief lizards") are a group of feathered maniraptoran dinosaurs from the Cretaceous Period of what are now Asia and North America. They are distinct for their characteristically short, beaked, parrot-like skulls, with or without bony crests atop the head. They ranged in size from Caudipteryx, which was the size of a turkey, to the 8-meter-long, 1.4-ton Gigantoraptor. The group (along with all maniraptoran dinosaurs) is close to the ancestry of birds. Some researchers such as Maryanska et al (2002) and Osmólska et al. (2004) have proposed that they may represent primitive flightless birds. The most complete oviraptorosaur specimens have been found in Asia. The North American oviraptorosaur record is sparse.

The earliest and most basal ("primitive") known oviraptorosaurs are Ningyuansaurus wangi, Protarchaeopteryx robusta and Incisivosaurus gauthieri, both from the lower Yixian Formation of China, dating to about 125 million years ago during the Aptian age of the early Cretaceous period. A tiny neck vertebra reported from the Wadhurst Clay Formation of England shares some features in common with oviraptorosaurs, and may represent an earlier occurrence of this group (at about 140 million years ago).

↑ Return to Menu

Maniraptora in the context of Therizinosauria

Therizinosaurs (; once called segnosaurs) are an extinct group of large herbivorous theropod dinosaurs whose fossils have been mainly discovered from Cretaceous deposits in Asia and North America. Potential fragmentary remains have also been found in Jurassic deposits of Asia and Europe. Various features of the forelimbs, skull and pelvis unite these finds as both theropods and maniraptorans, making them relatives of birds. The name of the representative genus, Therizinosaurus, is derived from the Greek θερίζω (therízō, 'to reap' or 'scythe') and σαῦρος (saûros, 'lizard'). The older representative, Segnosaurus, is derived from the Latin sēgnis ('slow') and the Greek σαῦρος.

↑ Return to Menu

Maniraptora in the context of Alvarezsauroidea

Alvarezsauroidea (from the Argentine historian, writer and physician Gregorio Álvarez) is a group of small maniraptoran dinosaurs. The group was first formally proposed by Choiniere and colleagues in 2010, to contain the family Alvarezsauridae and non-alvarezsaurid alvarezsauroids, such as Haplocheirus, which is the basalmost of the Alvarezsauroidea (from the Late Jurassic, Asia). The discovery of Haplocheirus extended the stratigraphic evidence for the group Alvarezsauroidea about 63 million years further in the past. The division of Alvarezsauroidea into the Alvarezsauridae and the non-alvarezsaurid alvarezsauroids is based on differences in their morphology, especially in their hand morphology.

↑ Return to Menu