Magnetohydrodynamics in the context of Nobel Prize in Physics


Magnetohydrodynamics in the context of Nobel Prize in Physics

Magnetohydrodynamics Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Magnetohydrodynamics in the context of "Nobel Prize in Physics"


⭐ Core Definition: Magnetohydrodynamics

Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydro­magnetics) is a model of electrically conducting fluids that treats all types of charged particles together as one continuous fluid. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in multiple fields including space physics, geophysics, astrophysics, and engineering.

The word magnetohydrodynamics is derived from magneto- meaning magnetic field, hydro- meaning water, and dynamics meaning movement. The field of MHD was initiated by Hannes Alfvén, for which he received the Nobel Prize in Physics in 1970.

↓ Menu
HINT:

In this Dossier

Magnetohydrodynamics in the context of Electricity generation

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery (transmission, distribution, etc.) to end users or its storage, using for example, the pumped-storage method.

Consumable electricity is not freely available in nature, so it must be "produced", transforming other forms of energy to electricity. Production is carried out in power stations, also called "power plants". Electricity is most often generated at a power plant by electromechanical generators, primarily driven by heat engines fueled by combustion or nuclear fission, but also by other means such as the kinetic energy of flowing water and wind. Other energy sources include solar photovoltaics and geothermal power. There are exotic and speculative methods to recover energy, such as proposed fusion reactor designs which aim to directly extract energy from intense magnetic fields generated by fast-moving charged particles generated by the fusion reaction (see magnetohydrodynamics).

View the full Wikipedia page for Electricity generation
↑ Return to Menu

Magnetohydrodynamics in the context of Accretion disk

An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward toward the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion disks is referred to as diskoseismology.

View the full Wikipedia page for Accretion disk
↑ Return to Menu

Magnetohydrodynamics in the context of Space physics

Space physics, also known as space plasma physics, is the study of naturally occurring plasmas within Earth's upper atmosphere and the rest of the Solar System. It includes the topics of aeronomy, aurorae, planetary ionospheres and magnetospheres, radiation belts, space weather, solar wind, the Sun, and more recently the Interstellar medium.

Space physics is both a pure science and an applied science, with applications in radio transmission, spacecraft operations (particularly communications and weather satellites), and in meteorology. Important physical processes in space physics include magnetic reconnection, plasma waves and plasma instabilities. It is studied using direct in situ measurements by sounding rockets and spacecraft, indirect remote sensing of plasmas with radar (through methods such as Incoherent scatter and GPS scintillation), and theoretical studies using models such as magnetohydrodynamics (fluid theory), or kinetic theory.

View the full Wikipedia page for Space physics
↑ Return to Menu

Magnetohydrodynamics in the context of Fast magnetosonic wave

In physics, magnetosonic waves, also known as magnetoacoustic waves, are low-frequency compressive waves driven by mutual interaction between an electrically conducting fluid and a magnetic field. They are associated with compression and rarefaction of both the fluid and the magnetic field, as well as with an effective tension that acts to straighten bent magnetic field lines. The properties of magnetosonic waves are highly dependent on the angle between the wavevector and the equilibrium magnetic field and on the relative importance of fluid and magnetic processes in the medium. They only propagate with frequencies much smaller than the ion cyclotron or ion plasma frequencies of the medium, and they are nondispersive at small amplitudes.

There are two types of magnetosonic waves, fast magnetosonic waves and slow magnetosonic waves, which—together with Alfvén waves—are the normal modes of ideal magnetohydro­dynamics. The fast and slow modes are distinguished by magnetic and gas pressure oscillations that are either in-phase or anti-phase, respectively. This results in the phase velocity of any given fast mode always being greater than or equal to that of any slow mode in the same medium, among other differences.

View the full Wikipedia page for Fast magnetosonic wave
↑ Return to Menu

Magnetohydrodynamics in the context of Hannes Alfvén

Hannes Olof Gösta Alfvén (Swedish: [alˈveːn]; 30 May 1908 – 2 April 1995) was a Swedish electrical engineer, plasma physicist and winner of the 1970 Nobel Prize in Physics for his work on magnetohydrodynamics (MHD). He described the class of MHD waves now known as Alfvén waves. He was originally trained as an electrical power engineer and later moved to research and teaching in the fields of plasma physics and electrical engineering. Alfvén made many contributions to plasma physics, including theories describing the behavior of aurorae, the Van Allen radiation belts, the effect of magnetic storms on the Earth's magnetic field, the terrestrial magnetosphere, and the dynamics of plasmas in the Milky Way galaxy.

View the full Wikipedia page for Hannes Alfvén
↑ Return to Menu

Magnetohydrodynamics in the context of Plasma instabilities

In plasma physics, plasma stability concerns the stability properties of a plasma in equilibrium and its behavior under small perturbations. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. It is an important consideration in topics such as nuclear fusion and astrophysical plasma.

In many cases, a plasma can be treated as a fluid and analyzed with the theory of magnetohydrodynamics (MHD). MHD stability is necessary for stable operation of magnetic confinement fusion devices and places certain operational limits. The beta limit, for example, sets the maximum achievable plasma beta in tokamaks.

View the full Wikipedia page for Plasma instabilities
↑ Return to Menu

Magnetohydrodynamics in the context of Perfect conductor

In electrostatics, a perfect conductor is an idealized model for real conducting materials. The defining property of a perfect conductor is that static electric field and the charge density both vanish in its interior. If the conductor has excess charge, it accumulates as an infinitesimally thin layer of surface charge. An external electric field is screened from the interior of the material by rearrangement of the surface charge.

Alternatively, a perfect conductor is an idealized material exhibiting infinite electrical conductivity or, equivalently, zero resistivity (cf. perfect dielectric). While perfect electrical conductors do not exist in nature, the concept is a useful model when electrical resistance is negligible compared to other effects. One example is ideal magnetohydrodynamics, the study of perfectly conductive fluids. Another example is electrical circuit diagrams, which carry the implicit assumption that the wires connecting the components have no resistance. Yet another example is in computational electromagnetics, where perfect conductors can be simulated faster, since the parts of equations that take finite conductivity into account can be neglected.

View the full Wikipedia page for Perfect conductor
↑ Return to Menu

Magnetohydrodynamics in the context of Solar transition region

The solar transition region is a region of the Sun's atmosphere between the upper chromosphere and corona. It is important because it is the site of several unrelated but important transitions in the physics of the solar atmosphere:

  • Below, gravity tends to dominate the shape of most features, so that the Sun may often be described in terms of layers and horizontal features (like sunspots); above, dynamic forces dominate the shape of most features, so that the transition region itself is not a well-defined layer at a particular altitude.
  • Below, most of the helium is not fully ionized, so that it radiates energy very effectively; above, it becomes fully ionized. This has a profound effect on the equilibrium temperature (see below).
  • Below, the material is opaque to the particular colors associated with spectral lines, so that most spectral lines formed below the transition region are absorption lines in infrared, visible light, and near ultraviolet, while most lines formed at or above the transition region are emission lines in the far ultraviolet (FUV) and X-rays. This makes radiative transfer of energy within the transition region very complicated.
  • Below, gas pressure and fluid dynamics usually dominate the motion and shape of structures; above, magnetic forces dominate the motion and shape of structures, giving rise to different simplifications of magnetohydrodynamics. The transition region itself is not well studied in part because of the computational cost, uniqueness, and complexity of Navier–Stokes combined with electrodynamics.

Helium ionization is important because it is a critical part of the formation of the corona: when solar material is cool enough that the helium within it is only partially ionized (i.e. retains one of its two electrons), the material cools by radiation very effectively via both black-body radiation and direct coupling to the helium Lyman continuum. This condition holds at the top of the chromosphere, where the equilibrium temperature is a few tens of thousands of kelvins.

View the full Wikipedia page for Solar transition region
↑ Return to Menu

Magnetohydrodynamics in the context of Solar dynamo

The solar dynamo is a physical process that generates the Sun's magnetic field. It is explained with a variant of the dynamo theory. A naturally occurring electric generator in the Sun's interior produces electric currents and a magnetic field, following the laws of Ampère, Faraday and Ohm, as well as the laws of fluid dynamics, which together form the laws of magnetohydrodynamics. The detailed mechanism of the solar dynamo is not known and is the subject of current research.

View the full Wikipedia page for Solar dynamo
↑ Return to Menu