Magnetoelectric effect in the context of Multiferroics


Magnetoelectric effect in the context of Multiferroics

Magnetoelectric effect Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Magnetoelectric effect in the context of "Multiferroics"


HINT:

👉 Magnetoelectric effect in the context of Multiferroics

Multiferroics are defined as materials that exhibit more than one of the primary ferroic properties in the same phase:

  • ferromagnetism – a magnetisation that is switchable by an applied magnetic field
  • ferroelectricity – an electric polarisation that is switchable by an applied electric field
  • ferroelasticity – a deformation that is switchable by an applied stress

While ferroelectric, ferroelastics, and ferromagnetics are formally multiferroics, these days the term is usually used to describe the magnetoelectric multiferroics that are simultaneously ferromagnetic and ferroelectric. Sometimes the definition is expanded to include nonprimary order parameters, such as antiferromagnetism or ferrimagnetism. In addition, other types of primary order, such as ferroic arrangements of magnetoelectric multipoles of which ferrotoroidicity is an example, were proposed.

↓ Explore More Topics
In this Dossier

Magnetoelectric effect in the context of Electric induction

In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field. It plays a major role in the physics of phenomena such as the capacitance of a material, the response of dielectrics to an electric field, how shapes can change due to electric fields in piezoelectricity or flexoelectricity as well as the creation of voltages and charge transfer due to elastic strains.

In any material, if there is an inversion center then the charge at, for instance, and are the same. This means that there is no dipole. If an electric field is applied to an insulator, then (for instance) the negative charges can move slightly towards the positive side of the field, and the positive charges in the other direction. This leads to an induced dipole which is described as a polarization. There can be slightly different movements of the negative electrons and positive nuclei in molecules, or different displacements of the atoms in an ionic compound. Materials which do not have an inversion center display piezoelectricity and always have a polarization; in others spatially varying strains can break the inversion symmetry and lead to polarization, the flexoelectric effect. Other stimuli such as magnetic fields can lead to polarization in some materials, this being called the magnetoelectric effect.

View the full Wikipedia page for Electric induction
↑ Return to Menu