Magnetic fields in the context of "Rotor (electric)"

Play Trivia Questions online!

or

Skip to study material about Magnetic fields in the context of "Rotor (electric)"




⭐ Core Definition: Magnetic fields

A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field (more precisely, a pseudovector field).

↓ Menu

👉 Magnetic fields in the context of Rotor (electric)

The rotor is a moving component of an electromagnetic system in the electric motor, electric generator, or alternator. Its rotation is due to the interaction between the windings and magnetic fields which produces a torque around the rotor's axis.

↓ Explore More Topics
In this Dossier

Magnetic fields in the context of Electric field

An electric field (sometimes called E-field) is a physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) describes their capacity to exert attractive or repulsive forces on another charged object. Charged particles exert attractive forces on each other when the sign of their charges are opposite, one being positive while the other is negative, and repel each other when the signs of the charges are the same. Because these forces are exerted mutually, two charges must be present for the forces to take place. These forces are described by Coulomb's law, which says that the greater the magnitude of the charges, the greater the force, and the greater the distance between them, the weaker the force. Informally, the greater the charge of an object, the stronger its electric field. Similarly, an electric field is stronger nearer charged objects and weaker further away. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field. Electromagnetism is one of the four fundamental interactions of nature.

Electric fields are important in many areas of physics, and are exploited in electrical technology. For example, in atomic physics and chemistry, the interaction in the electric field between the atomic nucleus and electrons is the force that holds these particles together in atoms. Similarly, the interaction in the electric field between atoms is the force responsible for chemical bonding that result in molecules.

↑ Return to Menu

Magnetic fields in the context of Body forces

In physics, a body force is a force that acts throughout the volume of a body. Forces due to gravity, electric fields and magnetic fields are examples of body forces. Body forces contrast with contact forces or surface forces which are exerted to the surface of an object.Fictitious forces such as the centrifugal force, Euler force, and the Coriolis effect are other examples of body forces.

↑ Return to Menu

Magnetic fields in the context of Gantry (medical)

In a medical facility, such as a hospital or clinic, a gantry holds radiation detectors, a radiation source, or both, used to diagnose or treat a patient's illness. Radiation sources may produce gamma radiation, x-rays, electromagnetic radiation, or magnetic fields depending on the purpose of the device.

↑ Return to Menu