MEMS in the context of "Molecular electronics"

Play Trivia Questions online!

or

Skip to study material about MEMS in the context of "Molecular electronics"

Ad spacer

⭐ Core Definition: MEMS

MEMS (micro-electromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices generally range in size from 20 micrometres to a millimetre (i.e., 0.02 to 1.0 mm), although components arranged in arrays (e.g., digital micromirror devices) can be more than 1000 mm. They usually consist of a central unit that processes data (an integrated circuit chip such as microprocessor) and several components that interact with the surroundings (such as microsensors).

Because of the large surface area to volume ratio of MEMS, forces produced by ambient electromagnetism (e.g., electrostatic charges and magnetic moments), and fluid dynamics (e.g., surface tension and viscosity) are more important design considerations than with larger scale mechanical devices. MEMS technology is distinguished from molecular nanotechnology or molecular electronics in that the latter two must also consider surface chemistry.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

MEMS in the context of Virtual reality headset

A virtual reality headset (VR headset) is a head-mounted device that uses 3D near-eye displays and positional tracking to provide a virtual reality environment for the user. VR headsets are widely used with VR video games, but they are also used in other applications, including simulators and trainers. VR headsets typically include a stereoscopic display (providing separate images for each eye), stereo sound, and sensors like accelerometers and gyroscopes for tracking the pose of the user's head to match the orientation of the virtual camera with the user's eye positions in the real world. Mixed reality (MR) headsets are VR headsets that enable the user to see and interact with the outside world. Examples of MR headsets include the Apple Vision Pro and Meta Quest 3.

VR headsets typically use at least one MEMS IMU for three degrees of freedom (3DOF) motion tracking, and optionally more tracking technology for six degrees of freedom (6DOF) motion tracking. 6DOF devices typically use a sensor fusion algorithm to merge the data from the IMU and any other tracking sources, typically either one or more external sensors, or "inside-out" tracking using outward facing cameras embedded in the headset. The sensor fusion algorithms that are used are often variants of a Kalman filter. VR headsets can support motion controllers, which similarly combine inputs from accelerometers and gyroscopes with the headset's motion tracking system.

↑ Return to Menu

MEMS in the context of Digital Light Processing

Digital light processing (DLP) is a set of chipsets based on optical micro-electro-mechanical technology that uses a digital micromirror device. It was originally developed in 1987 by Larry Hornbeck of Texas Instruments. While the DLP imaging device was invented by Texas Instruments, the first DLP-based projector was introduced by Digital Projection Ltd in 1997. Digital Projection and Texas Instruments were both awarded Emmy Awards in 1998 for the DLP projector technology.

DLP technology is used in DLP front projectors (standalone projection units for classrooms and business primarily), DLP rear projection television sets, and digital signs. It was also used in about 85% of digital cinema projection as of around 2011, and in additive manufacturing as a light source in some printers to cure resins into solid 3D objects.

↑ Return to Menu