Lunar eclipse in the context of "Eclipse"

⭐ In the context of eclipses, a situation where one celestial body is completely hidden by another is specifically referred to as…




⭐ Core Definition: Lunar eclipse

A lunar eclipse, also called a blood moon, is an astronomical event that occurs when the Moon orbits through Earth's shadow.‍‍ Lunar eclipses occur during eclipse season, when the Moon's orbital plane is approximately in line with Earth and the Sun. The type and length of a lunar eclipse depend on the Moon's proximity to the lunar node.‍‍ In contrast with illusive and short-lasting solar eclipses, lunar eclipses can be observed from anywhere on the night side of Earth and often last for an hour or longer. Lunar eclipses are safe to observe without eye protection.

Lunar eclipses are notable for causing the Moon to appear orange or red. This occurs when the Moon passes through the Earth's umbra, necessitating any sunlight that reaches the Moon to first pass through the Earth's atmosphere. The resulting Rayleigh scattering removes high-wavelength colors such as violet and blue from the incoming light before it reflects off the lunar surface and is observed on Earth.

↓ Menu

👉 Lunar eclipse in the context of Eclipse

An eclipse is an astronomical event which occurs when an astronomical object or spacecraft is temporarily obscured, by passing into the shadow of another body or by having another body pass between it and the viewer. This alignment of three celestial objects is known as a syzygy. An eclipse is the result of either an occultation (completely hidden) or a transit (partially hidden). A "deep eclipse" (or "deep occultation") is when a small astronomical object is behind a bigger one.

The term eclipse is most often used to describe either a solar eclipse, when the Moon's shadow crosses the Earth's surface, or a lunar eclipse, when the Moon moves into the Earth's shadow. However, it can also refer to such events beyond the Earth–Moon system: for example, a planet moving into the shadow cast by one of its moons, a moon passing into the shadow cast by its host planet, or a moon passing into the shadow of another moon. A binary star system can also produce eclipses if the plane of the orbit of its constituent stars intersects the observer's position.

↓ Explore More Topics
In this Dossier

Lunar eclipse in the context of Diurnal motion

In astronomy, diurnal motion (from Latin diurnus 'daily', from Latin diēs 'day') is the apparent motion of celestial objects (e.g. the Sun and stars) around Earth, or more precisely around the two celestial poles, over the course of one day. It is caused by Earth's rotation around its axis, so almost every star appears to follow a circular arc path, called the diurnal circle, often depicted in star trail photography.

The time for one complete rotation is 23 hours, 56 minutes, and 4.09 seconds – one sidereal day. The first experimental demonstration of this motion was conducted by Léon Foucault. Because Earth orbits the Sun once a year, the sidereal time at any given place and time will gain about four minutes against local civil time, every 24 hours, until, after a year has passed, one additional sidereal "day" has elapsed compared to the number of solar days that have gone by.

↑ Return to Menu

Lunar eclipse in the context of Metonic cycle

The Metonic cycle or enneadecaeteris (from Ancient Greek: ἐννεακαιδεκαετηρίς, from ἐννεακαίδεκα, "nineteen") is a period of almost exactly 19 years after which the lunar phases recur at the same time of the year. The recurrence is not perfect, and by precise observation the Metonic cycle defined as 235 synodic months is just 2 hours, 4 minutes and 58 seconds longer than 19 tropical years. Meton of Athens, in the 5th century BC, judged the cycle to be a whole number of days, 6,940. Using these whole numbers facilitates the construction of a lunisolar calendar.

A tropical year (about 365.24 days) is longer than 12 lunar months (about 354.36 days) and shorter than 13 of them (about 383.90 days). In a Metonic calendar (a type of lunisolar calendar), there are twelve years of 12 lunar months and seven years of 13 lunar months.

↑ Return to Menu

Lunar eclipse in the context of Syzygy (astronomy)

In astronomy, a syzygy (/ˈsɪzəi/ SIZ-ə-jee; from Ancient Greek συζυγία (suzugía) 'union, yoking', expressing the sense of σύν (syn- "together") and ζυγ- (zug- "a yoke")) is a roughly straight-line configuration of three or more celestial bodies in a gravitational system.

The word is often used in reference to the Sun, Earth, and either the Moon or a planet, where the latter is in conjunction or opposition. Solar and lunar eclipses occur at times of syzygy, as do transits and occultations.

↑ Return to Menu

Lunar eclipse in the context of Solar eclipse

A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of Earth, totally or partially. Such an alignment occurs approximately every six months, during the eclipse season in its new moon phase, when the Moon's orbital plane is closest to the plane of Earth's orbit. In a total eclipse, the disk of the Sun is fully obscured by the Moon. In partial and annular eclipses, only part of the Sun is obscured. Unlike a lunar eclipse, which may be viewed from anywhere on the night side of Earth, a solar eclipse can only be viewed from a relatively small area of the world. As such, although total solar eclipses occur somewhere on Earth every 18 months on average, they recur at any given place only once every 360 to 410 years.

If the Moon were in a perfectly circular orbit and in the same orbital plane as Earth, there would be total solar eclipses at every new moon. Instead, because the Moon's orbit is tilted at about 5 degrees to Earth's orbit, its shadow usually misses Earth. Solar (and lunar) eclipses therefore happen only during eclipse seasons, resulting in at least two, and up to five, solar eclipses each year, no more than two of which can be total. Total eclipses are rarer because they require a more precise alignment between the centers of the Sun and Moon, and because the Moon's apparent size in the sky is sometimes too small to fully cover the Sun.

↑ Return to Menu

Lunar eclipse in the context of Full moon

The full moon is the lunar phase when the Moon appears fully illuminated from Earth's perspective. This occurs when Earth is located between the Sun and the Moon (when the ecliptic longitudes of the Sun and Moon differ by 180°). This means that the lunar hemisphere facing Earth—the near side—is completely sunlit and appears as an approximately circular disk. The full moon occurs roughly once a month.

The time interval between a full moon and the next repetition of the same phase, a synodic month, averages about 29.53 days. Because of irregularities in the moon's orbit, the new and full moons may fall up to thirteen hours either side of their mean. If the calendar date is not locally determined through observation of the new moon at the beginning of the month there is the potential for a further twelve hours difference depending on the time zone. Potential discrepancies also arise from whether the calendar day is considered to begin in the evening or at midnight. It is normal for the full moon to fall on the fourteenth or the fifteenth of the month according to whether the start of the month is reckoned from the appearance of the new moon or from the conjunction.

↑ Return to Menu

Lunar eclipse in the context of October 2004 lunar eclipse

A total lunar eclipse occurred at the Moon’s ascending node of orbit on Thursday, October 28, 2004, with an umbral magnitude of 1.3100. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 5.4 days before apogee (on November 2, 2004, at 13:10 UTC), the Moon's apparent diameter was smaller.

This lunar eclipse is the last of a tetrad, with four total lunar eclipses in series, the others being on May 16, 2003; November 9, 2004; and May 4, 2004.

↑ Return to Menu

Lunar eclipse in the context of April 2014 lunar eclipse

A total lunar eclipse occurred at the Moon’s ascending node of orbit on Tuesday, April 15, 2014, with an umbral magnitude of 1.2918. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. The Moon's apparent diameter was near the average diameter because it occurred 6.9 days after apogee (on April 8, 2014, at 10:50 UTC) and 7.6 days before perigee (on April 22, 2014, at 20:20 UTC).

This lunar eclipse is the first of a tetrad, with four total lunar eclipses in series, the others being on October 8, 2014; April 4, 2015; and September 28, 2015.

↑ Return to Menu

Lunar eclipse in the context of Eclipse season

An eclipse season is a period of roughly 1 month, occurring roughly every six months, when the orbits of the Earth, Sun, and Moon align such that solar and lunar eclipses occur. Eclipse seasons are the result of the axial parallelism of the Moon's orbital plane (tilted five degrees to the Earth's orbital plane), just as Earth's weather seasons are the result of the axial parallelism of Earth's tilted axis as it orbits around the Sun. During the season, the "lunar nodes" – the line where the Moon's orbital plane intersects with the Earth's orbital plane – align with the Sun and Earth, such that a solar eclipse is formed during the new moon phase and a lunar eclipse is formed during the full moon phase.

Only two (or occasionally three) eclipse seasons occur during each year, and each season lasts about 35 days and repeats just short of six months (173 days) later, thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. During the eclipse season, the Moon is at a low ecliptic latitude (less than around 1.5° north or south), hence the Sun, Moon, and Earth become aligned straightly enough (in syzygy) for an eclipse to occur. Eclipse seasons should occur 38 times within a saros period (6,585.3 days).

↑ Return to Menu