Lungs in the context of "Bronchi"

Play Trivia Questions online!

or

Skip to study material about Lungs in the context of "Bronchi"

Ad spacer

⭐ Core Definition: Lungs

The lungs are the primary organs of the respiratory system in many animals, including humans. In mammals and most other tetrapods, two lungs are located near the backbone on either side of the heart. Their function in the respiratory system is to extract oxygen from the atmosphere and transfer it into the bloodstream, and to release carbon dioxide from the bloodstream into the atmosphere, in a process of gas exchange. Respiration is driven by different muscular systems in different species. Mammals, reptiles and birds use their musculoskeletal systems to support and foster breathing. In early tetrapods, air was driven into the lungs by the pharyngeal muscles via buccal pumping, a mechanism still seen in amphibians. In humans, the primary muscle that drives breathing is the diaphragm. The lungs also provide airflow that makes vocalisation including speech possible.

Humans have two lungs, a right lung and a left lung. They are situated within the thoracic cavity of the chest. The right lung is bigger than the left, and the left lung shares space in the chest with the heart. The lungs together weigh approximately 1.3 kilograms (2.9 lb), and the right is heavier. The lungs are part of the lower respiratory tract that begins at the trachea and branches into the bronchi and bronchioles, which receive air breathed in via the conducting zone. These divide until air reaches microscopic alveoli, where gas exchange takes place. Together, the lungs contain approximately 2,400 kilometers (1,500 mi) of airways and 300 to 500 million alveoli. Each lung is enclosed within a pleural sac of two pleurae which allows the inner and outer walls to slide over each other whilst breathing takes place, without much friction. The inner visceral pleura divides each lung as fissures into sections called lobes. The right lung has three lobes and the left has two. The lobes are further divided into bronchopulmonary segments and lobules. The lungs have a unique blood supply, receiving deoxygenated blood sent from the heart to receive oxygen (the pulmonary circulation) and a separate supply of oxygenated blood (the bronchial circulation).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Lungs in the context of Human voice

The human voice consists of sound made by a human being using the vocal tract, including talking, singing, laughing, crying, screaming, shouting, humming or yelling. The human voice is specifically a part of human sound production in which the vocal folds (vocal cords) are the primary sound source. (Other sound production mechanisms produced from the same general area of the body involve the production of unvoiced consonants, clicks, whistling and whispering.)

Generally speaking, the mechanism for generating the human voice can be subdivided into three parts; the lungs, the vocal folds within the larynx (voice box), and the articulators. The lungs, the "pump" must produce adequate airflow and air pressure to vibrate vocal folds. The vocal folds (vocal cords) then vibrate to use airflow from the lungs to create audible pulses that form the laryngeal sound source. The muscles of the larynx adjust the length and tension of the vocal folds to 'fine-tune' pitch and tone. The articulators (the parts of the vocal tract above the larynx consisting of tongue, palate, cheek, lips, etc.) articulate and filter the sound emanating from the larynx and to some degree can interact with the laryngeal airflow to strengthen or weaken it as a sound source.

↑ Return to Menu

Lungs in the context of Excretion

Excretion is elimination of metabolic waste, which is an essential process in all organisms. In vertebrates, this is primarily carried out by the lungs, kidneys, and skin. This is in contrast with secretion, where the substance may have specific tasks after leaving the cell. For example, placental mammals expel urine from the bladder through the urethra, which is part of the excretory system. Unicellular organisms discharge waste products directly through the surface of the cell.

During life activities such as cellular respiration, several chemical reactions take place in the body. These are known as metabolism. These chemical reactions produce waste products such as carbon dioxide, water, salts, urea and uric acid. Accumulation of these wastes beyond a level inside the body is harmful to the body. The excretory organs remove these wastes. This process of removal of metabolic waste from the body is known as excretion.

↑ Return to Menu

Lungs in the context of Sneezing

A sneeze (also known as sternutation) is a semi-autonomous, convulsive expulsion of air from the lungs through the nose and mouth, usually caused by foreign particles irritating the nasal mucosa. A sneeze expels air forcibly from the mouth and nose in an explosive, spasmodic involuntary action. This action allows for mucus to escape through the nasal cavity and saliva to escape from the oral cavity. Sneezing is possibly linked to sudden exposure to bright light (known as photic sneeze reflex), sudden change (drop) in temperature, breeze of cold air, a particularly full stomach, exposure to allergens, or viral infection. Because sneezes can spread disease through infectious aerosol droplets, it is recommended to cover one's mouth and nose with the forearm, the inside of the elbow, a facial tissue or a handkerchief while sneezing. In addition to covering the mouth, looking down is also recommended to change the direction of the droplets spread and avoid high concentration in the human breathing heights.

The function of sneezing is to expel mucus containing foreign particles or irritants and cleanse the nasal cavity. During a sneeze, the soft palate and palatine uvula depress while the back of the tongue elevates to partially close the passage to the mouth, creating a venturi (similar to a carburetor) due to Bernoulli's principle so that air ejected from the lungs is accelerated through the mouth and thus creating a low pressure point at the back of the nose. This way air is forced in through the front of the nose and the expelled mucus and contaminants are launched out the mouth. Sneezing with the mouth closed does expel mucus through the nose but is not recommended because it creates a very high pressure in the head and is potentially harmful.

↑ Return to Menu

Lungs in the context of Pulmonic consonant

A pulmonic consonant is a consonant produced by air pressure from the lungs, as opposed to ejective, implosive and click consonants.

Most languages have only pulmonic consonants. Ian Maddieson, in his survey of 566 languages, found that only 152 had ejectives, implosives, or clicks (or two or three of these types) – that is, 73% of the world's extant languages have only pulmonic consonants. See glottalic consonants and click consonants for more information on the distribution of nonpulmonic consonants.

↑ Return to Menu

Lungs in the context of Cutaneous respiration

Cutaneous respiration, or cutaneous gas exchange (sometimes called skin breathing), is a form of respiration in which gas exchange occurs across the skin or outer integument of an organism rather than gills or lungs. Cutaneous respiration may be the sole method of gas exchange, or may accompany other forms, such as ventilation. Cutaneous respiration occurs in a wide variety of organisms, including insects, amphibians, fish, sea snakes, turtles, and to a lesser extent in mammals.

↑ Return to Menu

Lungs in the context of Waterboarding

Waterboarding or controlled drowning is a form of torture in which water is poured over a cloth covering the face and breathing passages of an immobilized captive, causing the person to experience the sensation of drowning. In the most common method of waterboarding, the captive's face is covered with cloth or some other thin material and immobilized on their back at an incline of 10 to 20 degrees. Torturers pour water onto the face over the breathing passages, causing an almost immediate gag reflex and creating a drowning sensation for the captive. Normally, water is poured intermittently to prevent death; however, if the water is poured uninterruptedly it will lead to death by asphyxia. Waterboarding can cause extreme pain, damage to lungs, brain damage from oxygen deprivation, other physical injuries including broken bones due to struggling against restraints, and lasting psychological damage. Adverse physical effects can last for months, and psychological effects for years. The term "water board torture" appeared in press reports as early as 1976.

Waterboarding has been used in diverse places and at various points in history, including the Spanish and Flemish Inquisitions, by the United States military during the Philippine–American War, by Japanese and German officials during World War II, by the French in the Algerian War, by the U.S. during the Vietnam War and the war on terror, by the Pinochet regime in Chile, by the Khmer Rouge in Cambodia, by British security forces during the Troubles, and by South African police during the Apartheid era. Historically, waterboarding has been viewed as an especially severe form of torture.

↑ Return to Menu

Lungs in the context of Serous membrane

The serous membrane (or serosa) is a smooth epithelial membrane of mesothelium lining the contents and inner walls of body cavities, which secrete serous fluid to allow lubricated sliding movements between opposing surfaces. The serous membrane that covers internal organs (viscera) is called visceral, while the one that covers the cavity wall is called parietal. For instance the parietal peritoneum is attached to the abdominal wall and the pelvic walls. The visceral peritoneum is wrapped around the visceral organs. For the heart, the layers of the serous membrane are called parietal and visceral pericardium. For the lungs they are called parietal and visceral pleura. The visceral serosa of the uterus is called the perimetrium. The potential space between two opposing serosal surfaces is mostly empty except for the small amount of serous fluid.

The Latin anatomical name is tunica serosa. Serous membranes line and enclose several body cavities, also known as serous cavities, where they secrete a lubricating fluid which reduces friction from movements. Serosa is entirely different from the adventitia, a connective tissue layer which binds together structures rather than reducing friction between them. The serous membrane covering the heart and lining the mediastinum is referred to as the pericardium, the serous membrane lining the thoracic cavity and surrounding the lungs is referred to as the pleura, and that lining the abdominopelvic cavity and the viscera is referred to as the peritoneum.

↑ Return to Menu