Luis Walter Alvarez in the context of "Hugh Bradner"

Play Trivia Questions online!

or

Skip to study material about Luis Walter Alvarez in the context of "Hugh Bradner"




⭐ Core Definition: Luis Walter Alvarez

Luis Walter Alvarez (June 13, 1911 – September 1, 1988) was an American experimental physicist, inventor, and professor of Spanish descent who was awarded the Nobel Prize in Physics in 1968 for his discovery of resonance states in particle physics using the hydrogen bubble chamber. In 2007 the American Journal of Physics commented, "Luis Alvarez was one of the most brilliant and productive experimental physicists of the twentieth century."

After receiving his PhD from the University of Chicago in 1936, Alvarez went to work for Ernest Lawrence at the Radiation Laboratory at the University of California, Berkeley. Alvarez devised a set of experiments to observe K-electron capture in radioactive nuclei, predicted by the beta decay theory but never before observed. He produced tritium using the cyclotron and measured its lifetime. In collaboration with Felix Bloch, he measured the magnetic moment of the neutron.

↓ Menu

👉 Luis Walter Alvarez in the context of Hugh Bradner

Hugh Bradner (November 5, 1915 – May 5, 2008) was an American physicist at the University of California who is credited with inventing the neoprene wetsuit, which helped to revolutionize scuba diving and surfing.

A graduate of Ohio's Miami University, he received his doctorate from California Institute of Technology in Pasadena, California, in 1941. He worked at the US Naval Ordnance Laboratory during World War II, where he researched naval mines. In 1943, he was recruited by Robert Oppenheimer to join the Manhattan Project at the Los Alamos Laboratory. There, he worked with scientists including Luis Alvarez, John von Neumann and George Kistiakowsky on the development of the high explosives and exploding-bridgewire detonators required by atomic bombs.

↓ Explore More Topics
In this Dossier

Luis Walter Alvarez in the context of Cretaceous–Paleogene extinction event

The Cretaceous–Paleogene (K–Pg) extinction event, formerly known as the Cretaceous-Tertiary (K–T) extinction event, was a major mass extinction of three-quarters of the plant and animal species on Earth approximately 66 million years ago. The event caused the extinction of all non-avian dinosaurs. Most other tetrapods weighing more than 25 kg (55 lb) also became extinct, with the exception of some ectothermic species such as sea turtles and crocodilians. It marked the end of the Cretaceous period, and with it the Mesozoic era, while heralding the beginning of the current geological era, the Cenozoic Era. In the geologic record, the K–Pg event is marked by a thin layer of sediment called the K–Pg boundary or K–T boundary, which can be found throughout the world in marine and terrestrial rocks. The boundary clay shows unusually high levels of the metal iridium, which is more common in asteroids than in the Earth's crust.

As originally proposed in 1980 by a team of scientists led by Luis Alvarez and his son Walter, it is now generally thought that the K–Pg extinction resulted from the impact of a massive asteroid 10 to 15 km (6 to 9 mi) wide, 66 million years ago, causing the Chicxulub impact crater and devastating the global environment, mainly through a lingering impact winter which halted photosynthesis in plants and plankton. The impact hypothesis, also known as the Alvarez hypothesis, was bolstered by the discovery of the 180 km (112 mi) Chicxulub crater in the Gulf of Mexico's Yucatán Peninsula in the early 1990s. The temporal match between the ejecta layer, and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling), lead to the conclusion that the Chicxulub impact triggered the mass extinction. A 2016 drilling project into the Chicxulub peak ring confirmed that the peak ring comprised granite ejected within minutes from deep in the Earth, but contained hardly any gypsum, the usual sulfate-containing sea floor rock in the region: the gypsum would have vaporized and dispersed as an aerosol into the atmosphere, causing longer-term effects on the climate and food chain. In October 2019, researchers proposed the mechanisms of the mass extinction, arguing that the Chicxulub asteroid impact event rapidly acidified the oceans and produced long-lasting effects on the climate.

↑ Return to Menu

Luis Walter Alvarez in the context of Walter Alvarez

Walter Alvarez (born October 3, 1940) is a professor in the Earth and Planetary Science department at the University of California, Berkeley. He and his father, Nobel Prize–winning physicist Luis Alvarez, developed the theory that dinosaurs were killed by an asteroid impact.

↑ Return to Menu

Luis Walter Alvarez in the context of Alvarez hypothesis

The Alvarez hypothesis posits that the mass extinction of the non-avian dinosaurs and many other living things during the Cretaceous–Paleogene extinction event was caused by the impact of a large asteroid on the Earth. Prior to 2013, it was commonly cited as having happened about 65 million years ago, but Renne and colleagues (2013) gave an updated value of 66 million years. Evidence indicates that the asteroid fell in the Yucatán Peninsula, at Chicxulub, Mexico. The hypothesis is named after the father-and-son team of scientists Luis and Walter Alvarez, who first suggested it in 1980. Shortly afterwards, and independently, the same was suggested by Dutch paleontologist Jan Smit.

In March 2010, an international panel of scientists endorsed the asteroid hypothesis, specifically the Chicxulub impact, as being the cause of the extinction. A team of 41 scientists reviewed 20 years of scientific literature and in so doing also ruled out other theories such as massive volcanism. They had determined that a space rock 10–15 km (6–9 mi) in diameter hurtled into earth at Chicxulub. For comparison, the Martian moon Phobos has a diameter of 22 km (14 mi), and Mount Everest is just under 9 km (5.6 mi). The collision would have released the same energy as 100,000,000 megatonnes of TNT (4.2×10 J), over a billion times the energy of the atomic bombs dropped on Hiroshima and Nagasaki.

↑ Return to Menu

Luis Walter Alvarez in the context of Alfred Lee Loomis

Alfred Lee Loomis (November 4, 1887 – August 11, 1975) was an American attorney, investment banker, philanthropist, scientist, physicist, inventor of the LORAN Long Range Navigation System and a lifelong patron of scientific research. He established the Loomis Laboratory in Tuxedo Park, New York, and his role in the development of radar and the atomic bomb contributed to the Allied victory in World War II. He invented the Aberdeen Chronograph for measuring muzzle velocities, contributed significantly (perhaps critically, according to Luis Alvarez) to the development of a ground-controlled approach technology for aircraft, and participated in preliminary meetings of the Manhattan Project.

Loomis also made contributions to biological instrumentation. Working with E. Newton Harvey he co-invented the microscope centrifuge, and pioneered techniques for electroencephalography. In 1937, he discovered the sleep K-complex brainwave. During the Great Depression, Loomis anonymously paid the Physical Review journal's fees for authors who could not afford them.

↑ Return to Menu

Luis Walter Alvarez in the context of Neutron magnetic moment

The nucleon magnetic moments are the intrinsic magnetic dipole moments of the proton and neutron, symbols  μp  and μn . The nucleus of an atom comprises protons and neutrons, both nucleons that behave as small magnets. Their magnetic strengths are measured by their magnetic moments. The nucleons interact with normal matter through either the nuclear force or their magnetic moments, with the charged proton also interacting by the Coulomb force.

The proton's magnetic moment was directly measured in 1933 by Otto Stern team in University of Hamburg. While the neutron was determined to have a magnetic moment by indirect methods in the mid-1930s, Luis Alvarez and Felix Bloch made the first accurate, direct measurement of the neutron's magnetic moment in 1940. The proton's magnetic moment is exploited to make measurements of molecules by proton nuclear magnetic resonance. The neutron's magnetic moment is exploited to probe the atomic structure of materials using scattering methods and to manipulate the properties of neutron beams in particle accelerators.

↑ Return to Menu