Lorentz covariance in the context of "Greisen–Zatsepin–Kuzmin limit"

Play Trivia Questions online!

or

Skip to study material about Lorentz covariance in the context of "Greisen–Zatsepin–Kuzmin limit"

Ad spacer

⭐ Core Definition: Lorentz covariance

In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space".

Lorentz covariance, a related concept, is a property of the underlying spacetime manifold. Lorentz covariance has two distinct, but closely related meanings:

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Lorentz covariance in the context of Greisen–Zatsepin–Kuzmin limit

The Greisen–Zatsepin–Kuzmin limit (GZK limit or GZK cutoff) is a theoretical upper limit on the energy of cosmic ray protons traveling from other galaxies through the intergalactic medium to our galaxy. The limit is 5×10 eV (50 EeV), or about 8 joules (the energy of a proton travelling at ≈ 99.99999999999999999998% the speed of light). The limit is set by the slowing effect of interactions of the protons with the microwave background radiation over long distances (≈ 160 million light-years). The limit is at the same order of magnitude as the upper limit for energy at which cosmic rays have experimentally been detected, although indeed some detections appear to have exceeded the limit, as noted below. For example, one extreme-energy cosmic ray, the Oh-My-God Particle, which has been found to possess a record-breaking 3.12×10 eV (50 joules) of energy (about the same as the kinetic energy of a 95 km/h baseball).

In the past, the apparent violation of the GZK limit has inspired cosmologists and theoretical physicists to suggest other ways that circumvent the limit. These theories propose that ultra-high energy cosmic rays are produced near our galaxy or that Lorentz covariance is violated in such a way that protons do not lose energy on their way to our galaxy.

↓ Explore More Topics
In this Dossier

Lorentz covariance in the context of Vacuum energy

Vacuum energy is an underlying background energy that exists in space throughout the entire universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum.

The effects of vacuum energy can be experimentally observed in various phenomena such as spontaneous emission, the Casimir effect, and the Lamb shift, and are thought to influence the behavior of the Universe on cosmological scales. Using the upper limit of the cosmological constant, the vacuum energy of free space has been estimated to be 10 joules (10 ergs), or ~5 GeV per cubic meter. However, in quantum electrodynamics, consistency with the principle of Lorentz covariance and with the magnitude of the Planck constant suggests a much larger value of 10 joules per cubic meter. This huge discrepancy is known as the cosmological constant problem or, colloquially, the "vacuum catastrophe."

↑ Return to Menu

Lorentz covariance in the context of Superluminal communication

Faster-than-light communication, also called superluminal communication, is a hypothetical process in which information is conveyed at faster-than-light speeds. The current scientific consensus is that faster-than-light communication is not possible, and to date it has not been achieved in any experiment.

Faster-than-light communication other than possibly through wormholes is likely impossible because, in a Lorentz-invariant theory, it could be used to transmit information into the past. This would complicate causality, but no theoretical arguments conclusively preclude this possibility.

↑ Return to Menu