Logical disjunction in the context of Uncertainty principle


Logical disjunction in the context of Uncertainty principle

Logical disjunction Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Logical disjunction in the context of "Uncertainty principle"


⭐ Core Definition: Logical disjunction

In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as and read aloud as "or". For instance, the English language sentence "it is sunny or it is warm" can be represented in logic using the disjunctive formula , assuming that abbreviates "it is sunny" and abbreviates "it is warm".

In classical logic, disjunction is given a truth functional semantics according to which a formula is true unless both and are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an inclusive interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination. Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well as the numerous mismatches between classical disjunction and its nearest equivalents in natural languages.

↓ Menu
HINT:

In this Dossier

Logical disjunction in the context of Modus ponens

In propositional logic, modus ponens (/ˈmdəs ˈpnɛnz/; MP), also known as modus ponendo ponens (from Latin 'mode that by affirming affirms'), implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q. P is true. Therefore, Q must also be true."

Modus ponens is a mixed hypothetical syllogism and is closely related to another valid form of argument, modus tollens. Both have apparently similar but invalid forms: affirming the consequent and denying the antecedent. Constructive dilemma is the disjunctive version of modus ponens.

View the full Wikipedia page for Modus ponens
↑ Return to Menu

Logical disjunction in the context of Disjunctive syllogism

In classical logic, disjunctive syllogism (historically known as modus tollendo ponens (MTP), Latin for "mode that affirms by denying") is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.

An example in English:

View the full Wikipedia page for Disjunctive syllogism
↑ Return to Menu

Logical disjunction in the context of Constructive dilemma

Constructive dilemma is a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either P or R is true, then either Q or S has to be true. In sum, if two conditionals are true and at least one of their antecedents is, then at least one of their consequents must be too. Constructive dilemma is the disjunctive version of modus ponens, whereas destructive dilemma is the disjunctive version of modus tollens. The constructive dilemma rule can be stated:

where the rule is that whenever instances of "", "", and "" appear on lines of a proof, "" can be placed on a subsequent line.

View the full Wikipedia page for Constructive dilemma
↑ Return to Menu

Logical disjunction in the context of Propositional calculus

Propositional logic is a branch of logic. It is also called statement logic, sentential calculus, propositional calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called first-order propositional logic to contrast it with System F, but it should not be confused with first-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic.

View the full Wikipedia page for Propositional calculus
↑ Return to Menu

Logical disjunction in the context of Nonclassical logic

Non-classical logics (and sometimes alternative logics or non-Aristotelian logics) are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is commonly the case, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth.

Philosophical logic is understood to encompass and focus on non-classical logics, although the term has other meanings as well. In addition, some parts of theoretical computer science can be thought of as using non-classical reasoning, although this varies according to the subject area. For example, the basic boolean functions (e.g. AND, OR, NOT, etc) in computer science are very much classical in nature, as is clearly the case given that they can be fully described by classical truth tables. However, in contrast, some computerized proof methods may not use classical logic in the reasoning process.

View the full Wikipedia page for Nonclassical logic
↑ Return to Menu

Logical disjunction in the context of Boolean algebra (structure)

In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution).

Every Boolean algebra gives rise to a Boolean ring, and vice versa, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the axioms and theorems of Boolean algebra express the symmetry of the theory described by the duality principle.

View the full Wikipedia page for Boolean algebra (structure)
↑ Return to Menu

Logical disjunction in the context of Destructive dilemma

Destructive dilemma is the name of a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either Q is false or S is false, then either P or R must be false. In sum, if two conditionals are true, but one of their consequents is false, then one of their antecedents has to be false. Destructive dilemma is the disjunctive version of modus tollens. The disjunctive version of modus ponens is the constructive dilemma. The destructive dilemma rule can be stated:

where the rule is that wherever instances of "", "", and "" appear on lines of a proof, "" can be placed on a subsequent line.

View the full Wikipedia page for Destructive dilemma
↑ Return to Menu

Logical disjunction in the context of De Morgan's laws

In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation.

View the full Wikipedia page for De Morgan's laws
↑ Return to Menu

Logical disjunction in the context of Material implication (rule of inference)

where "" is a metalogical symbol representing "can be replaced in a proof with", P and Q are any given logical statements, and can be read as "(not P) or Q". To illustrate this, consider the following statements:

View the full Wikipedia page for Material implication (rule of inference)
↑ Return to Menu

Logical disjunction in the context of Tautology (rule of inference)

In propositional logic, tautology is either of two commonly used rules of replacement. The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs. They are:

The principle of idempotency of disjunction:

View the full Wikipedia page for Tautology (rule of inference)
↑ Return to Menu

Logical disjunction in the context of Disjunction introduction

Disjunction introduction or addition (also called or introduction) is a rule of inference of propositional logic and almost every other deduction system. The rule makes it possible to introduce disjunctions to logical proofs. It is the inference that if P is true, then P or Q must be true.

An example in English:

View the full Wikipedia page for Disjunction introduction
↑ Return to Menu

Logical disjunction in the context of Disjunction elimination

In propositional logic, disjunction elimination (sometimes named proof by cases, case analysis, or or elimination) is the valid argument form and rule of inference that allows one to eliminate a disjunctive statement from a logical proof. It is the inference that if a statement implies a statement and a statement also implies , then if either or is true, then has to be true. The reasoning is simple: since at least one of the statements P and R is true, and since either of them would be sufficient to entail Q, Q is certainly true.

An example in English:

View the full Wikipedia page for Disjunction elimination
↑ Return to Menu

Logical disjunction in the context of OR gate

The OR gate is a digital logic gate that implements logical disjunction. The OR gate outputs "true" if any of its inputs is "true"; otherwise it outputs "false". The input and output states are normally represented by different voltage levels.

View the full Wikipedia page for OR gate
↑ Return to Menu

Logical disjunction in the context of Boolean ring

In mathematics, a Boolean ring R is a ring for which x = x for all x in R, that is, a ring that consists of only idempotent elements. An example is the ring of integers modulo 2.

Every Boolean ring gives rise to a Boolean algebra, with ring multiplication corresponding to conjunction or meet , and ring addition to exclusive disjunction or symmetric difference (not disjunction , which would constitute a semiring). Conversely, every Boolean algebra gives rise to a Boolean ring. Boolean rings are named after the founder of Boolean algebra, George Boole.

View the full Wikipedia page for Boolean ring
↑ Return to Menu

Logical disjunction in the context of Duality principle (Boolean algebra)

In propositional logic and Boolean algebra, there is a duality between conjunction and disjunction, also called the duality principle. It is the most widely known example of duality in logic. The duality consists in these metalogical theorems:

  • In classical propositional logic, the connectives for conjunction and disjunction can be defined in terms of each other, and consequently, only one of them needs to be taken as primitive.
  • If is used as notation to designate the result of replacing every instance of conjunction with disjunction, and every instance of disjunction with conjunction (e.g. with , or vice-versa), in a given formula , and if is used as notation for replacing every sentence-letter in with its negation (e.g., with ), and if the symbol is used for semantic consequence and ⟚ for semantical equivalence between logical formulas, then it is demonstrable that  ⟚ , and also that if, and only if, , and furthermore that if  ⟚  then  ⟚ . (In this context, is called the dual of a formula .)
View the full Wikipedia page for Duality principle (Boolean algebra)
↑ Return to Menu