List of gravitationally rounded objects of the Solar System in the context of "Regular satellite"

Play Trivia Questions online!

or

Skip to study material about List of gravitationally rounded objects of the Solar System in the context of "Regular satellite"

Ad spacer

⭐ Core Definition: List of gravitationally rounded objects of the Solar System

This is a list of most likely gravitationally rounded objects (GRO) of the Solar System, which are objects that have a rounded, ellipsoidal shape due to their own gravity (but are not necessarily in hydrostatic equilibrium). Apart from the Sun itself, these objects qualify as planets according to common geophysical definitions of that term. The radii of these objects range over three orders of magnitude, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies, but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined. The Sun's orbital characteristics are listed in relation to the Galactic Center, while all other objects are listed in order of their distance from the Sun.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 List of gravitationally rounded objects of the Solar System in the context of Regular satellite

In astronomy, a regular moon or a regular satellite is a natural satellite following a relatively close, stable, and circular orbit which is generally aligned to its primary's equator. They form within discs of debris and gas that once surrounded their primary, usually the aftermath of a large collision or leftover material accumulated from the protoplanetary disc. Young regular moons then begin to accumulate material within the circumplanetary disc in a process similar to planetary accretion, as opposed to irregular moons, which formed independently before being captured into orbit around the primary.

Regular moons are extremely diverse in their physical characteristics. The largest regular moons are massive enough to be gravitationally rounded, with two regular moons—Ganymede and Titan—being larger than the planet Mercury. Large regular moons also support varied and complex geology. Several are known to have atmospheres, although only one regular moon—Titan—hosts a significant atmosphere capable of supporting weather and climate. As a result of their complexity, the rounded regular moons are often considered planetary objects in their own right by planetary scientists. In contrast, the smallest regular moons lack active geology. Most are heavily cratered and irregular in shape, often resembling small asteroids and other minor bodies in appearance.

↓ Explore More Topics
In this Dossier

List of gravitationally rounded objects of the Solar System in the context of Titan (moon)

Titan is the largest moon of Saturn and the second-largest in the Solar System. It is the only moon known to have a dense atmosphere—denser than Earth's—and is the only known object in the Solar System besides Earth with clear evidence of stable bodies of surface liquid. Titan is one of seven gravitationally rounded moons of Saturn and the second-most distant among them. Frequently described as a planet-like moon, Titan is 50% larger in diameter than Earth's Moon and 80% more massive. It is the second-largest moon in the Solar System after Jupiter's Ganymede and is larger than Mercury; yet Titan is only 40% as massive as Mercury, because Mercury is mainly iron and rock while much of Titan is mostly ice, which is less dense.

Discovered in 1655 by the Dutch astronomer Christiaan Huygens, Titan was the first known moon of Saturn and the sixth known planetary satellite (after Earth's moon and the four Galilean moons of Jupiter). Titan orbits Saturn at 20 Saturn radii or 1,200,000 km above Saturn's apparent surface. From Titan's surface, Saturn, disregarding its rings, subtends an arc of 5.09 degrees, and when viewed from above its thick atmospheric haze it would appear 11.4 times larger in the sky, in diameter, than the Moon from Earth, which subtends 0.48° of arc.

↑ Return to Menu

List of gravitationally rounded objects of the Solar System in the context of Hydrostatic equilibrium

In fluid mechanics, hydrostatic equilibrium, also called hydrostatic balance and hydrostasy, is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the atmosphere of Earth into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical.

Hydrostatic equilibrium is the distinguishing criterion between dwarf planets and small solar system bodies, and features in astrophysics and planetary geology. Said qualification of equilibrium indicates that the shape of the object is symmetrically rounded, mostly due to rotation, into an ellipsoid, where any irregular surface features are consequent to a relatively thin solid crust. In addition to the Sun, there are a dozen or so equilibrium objects confirmed to exist in the Solar System.

↑ Return to Menu

List of gravitationally rounded objects of the Solar System in the context of Triton (moon)

Triton is the largest natural satellite of the planet Neptune. It is the only moon of Neptune massive enough to be rounded under its own gravity and hosts a thin, hazy atmosphere. Triton orbits Neptune in a retrograde orbit—revolving in the opposite direction to the parent planet's rotation—the only large moon in the Solar System to do so. Triton is thought to have once been a dwarf planet from the Kuiper belt, captured into Neptune's orbit by the latter's gravity.

At 2,710 kilometers (1,680 mi) in diameter, Triton is the seventh-largest moon in the Solar System, the second-largest planetary moon in relation to its primary (after Earth's Moon), and larger than all of the known dwarf planets. The mean density is 2.061 g/cm, reflecting a composition of approximately 30–45% water ice by mass, with the rest being mostly rock and metal. Triton is differentiated, with a crust of primarily ice atop a probable subsurface ocean of liquid water and a solid rocky-metallic core at its center. Although Triton's orbit is nearly circular with a very low orbital eccentricity of 0.000016, its interior may still experience tidal heating through obliquity tides.

↑ Return to Menu

List of gravitationally rounded objects of the Solar System in the context of List of natural satellites

Of the Solar System's eight planets and its nine most likely dwarf planets, six planets and seven dwarf planets are known to be orbited by at least 431 natural satellites, or moons. At least 19 of them are large enough to be gravitationally rounded; of these, all are covered by a crust of ice except for Earth's Moon and Jupiter's Io. Several of the largest ones are in hydrostatic equilibrium and would therefore be considered dwarf planets or planets if they were in direct orbit around the Sun and not in their current states (orbiting planets or dwarf planets).

↑ Return to Menu