Lipid bilayer in the context of "Biological membrane"

Play Trivia Questions online!

or

Skip to study material about Lipid bilayer in the context of "Biological membrane"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Lipid bilayer in the context of Biological membrane

A biological membrane or biomembrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the cell and another. Biological membranes, in the form of eukaryotic cell membranes, consist of a phospholipid bilayer with embedded, integral and peripheral proteins used in communication and transportation of chemicals and ions. The bulk of lipids in a cell membrane provides a fluid matrix for proteins to rotate and laterally diffuse for physiological functioning. Proteins are adapted to high membrane fluidity environment of the lipid bilayer with the presence of an annular lipid shell, consisting of lipid molecules bound tightly to the surface of integral membrane proteins. The cell membranes are different from the isolating tissues formed by layers of cells, such as mucous membranes, basement membranes, and serous membranes.

↓ Explore More Topics
In this Dossier

Lipid bilayer in the context of Micelle

A micelle (/maɪˈsɛl/) or micella (/maɪˈsɛlə/) (pl. micelles or micellae, respectively) is an aggregate (or supramolecular assembly) of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloidal suspension (also known as associated colloidal system). A typical micelle in water forms an aggregate, with the hydrophilic "head" regions in contact with surrounding solvent, sequestering the hydrophobic single-tail regions in the micelle centre.

This phase is caused by the packing behavior of single-tail lipids in a bilayer. The difficulty in filling the volume of the interior of a bilayer, while accommodating the area per head group forced on the molecule by the hydration of the lipid head group, leads to the formation of the micelle. This type of micelle is known as a normal-phase micelle (or oil-in-water micelle). Inverse micelles have the head groups at the centre with the tails extending out (or water-in-oil micelle).

↑ Return to Menu

Lipid bilayer in the context of Universal common ancestor

The last universal common ancestor (LUCA) is the hypothesized common ancestral cell population from which all subsequent life forms descend, including Bacteria, Archaea, and Eukarya. The cell had a lipid bilayer; it possessed the genetic code and ribosomes which translated from DNA or RNA to proteins. Although the timing of the LUCA cannot be definitively constrained, most studies suggest that the LUCA existed by 3.5 billion years ago, and possibly as early as 4.3 billion years ago or earlier. The nature of this point or stage of divergence remains a topic of research.

All earlier forms of life preceding this divergence and all extant organisms are generally thought to share common ancestry. On the basis of a formal statistical test, this theory of a universal common ancestry (UCA) is supported in preference to competing multiple-ancestry hypotheses. The first universal common ancestor (FUCA) is a hypothetical non-cellular ancestor to LUCA and other now-extinct sister lineages.

↑ Return to Menu

Lipid bilayer in the context of Cell membrane

The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a semipermeable biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space). The cell membrane is a lipid bilayer, usually consisting of phospholipids and glycolipids; eukaryotes and some archaea typically have sterols (such as cholesterol in animals) interspersed between them as well, maintaining appropriate membrane fluidity at various temperatures. The membrane also contains membrane proteins, including integral proteins that span the membrane and serve as transporters, and peripheral proteins that attach to the surface of the cell membrane, acting as enzymes to facilitate interaction with the cell's environment. Glycolipids embedded in the outer lipid layer serve a similar purpose.

The cell membrane controls the movement of substances in and out of a cell, being selectively permeable to ions and organic molecules. In addition, cell membranes are involved in a variety of cellular processes such as cell adhesion, ion conductivity, and cell signaling and serve as the attachment surface for several extracellular structures, including the cell wall and the carbohydrate cell coat called the glycocalyx, as well as the intracellular network of protein fibers called the cytoskeleton. In the field of synthetic biology, cell membranes can be artificially reassembled.

↑ Return to Menu

Lipid bilayer in the context of Mitochondria

A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. They were discovered by Albert von Kölliker in 1857 in the voluntary muscles of insects. The term mitochondrion, meaning a thread-like granule, was coined by Carl Benda in 1898. The mitochondrion is popularly nicknamed the "powerhouse of the cell", a phrase popularized by Philip Siekevitz in a 1957 Scientific American article of the same name.

↑ Return to Menu

Lipid bilayer in the context of Gram-negative bacteria

Gram-negative bacteria are bacteria that, unlike Gram-positive bacteria, do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. Their defining characteristic is that their cell envelope consists of a thin peptidoglycan cell wall sandwiched between an inner (cytoplasmic) membrane and an outer membrane. These bacteria are found in all environments that support life on Earth.

Within this category, notable species include the model organism Escherichia coli, along with various pathogenic bacteria, such as Pseudomonas aeruginosa, Chlamydia trachomatis, and Yersinia pestis. They pose significant challenges in the medical field due to their outer membrane, which acts as a protective barrier against numerous antibiotics (including penicillin), detergents that would normally damage the inner cell membrane, and the antimicrobial enzyme lysozyme produced by animals as part of their innate immune system. Furthermore, the outer leaflet of this membrane contains a complex lipopolysaccharide (LPS) whose lipid A component can trigger a toxic reaction when the bacteria are lysed by immune cells. This reaction may lead to septic shock, resulting in low blood pressure, respiratory failure, reduced oxygen delivery, and lactic acidosis.

↑ Return to Menu

Lipid bilayer in the context of Vesicle (biology)

In cell biology, a vesicle is an organelle within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis), and the transport of materials within the plasma membrane. Alternatively, they may be prepared artificially, in which case they are called liposomes (not to be confused with lysosomes). If there is only one phospholipid bilayer, the vesicles are called unilamellar liposomes; otherwise they are called multilamellar liposomes. The membrane enclosing the vesicle is also a lamellar phase, similar to that of the plasma membrane, and intracellular vesicles can fuse with the plasma membrane to release their contents outside the cell. Vesicles can also fuse with other organelles within the cell. A vesicle released from the cell is known as an extracellular vesicle.

Vesicles perform a variety of functions. Because it is separated from the cytosol, the inside of the vesicle can be made to be different from the cytosolic environment. For this reason, vesicles are a basic tool used by the cell for organizing cellular substances. Vesicles are involved in metabolism, transport, buoyancy control, and temporary storage of food and enzymes. They can also act as chemical reaction chambers.

↑ Return to Menu

Lipid bilayer in the context of Unilamellar liposome

A unilamellar liposome is a spherical liposome, a vesicle, bounded by a single bilayer of an amphiphilic lipid or a mixture of such lipids, containing aqueous solution inside the chamber. Unilamellar liposomes are used to study biological systems and to mimic cell membranes, and are classified into three groups based on their size: small unilamellar liposomes/vesicles (SUVs) that with a size range of 20–100 nm, large unilamellar liposomes/vesicles (LUVs) with a size range of 100–1000 nm and giant unilamellar liposomes/vesicles (GUVs) with a size range of 1–200 μm. GUVs are mostly used as models for biological membranes in research work. Animal cells are 10–30 μm and plant cells are typically 10–100 μm. Even smaller cell organelles such as mitochondria are typically 1–2 μm. Therefore, a proper model should account for the size of the specimen being studied. In addition, the size of vesicles dictates their membrane curvature which is an important factor in studying fusion proteins. SUVs have a higher membrane curvature and vesicles with high membrane curvature can promote membrane fusion faster than vesicles with lower membrane curvature such as GUVs.

The composition and characteristics of the cell membrane varies in different cells (plant cells, mammalian cells, bacterial cells, etc). In a membrane bilayer, often the composition of the phospholipids is different between the inner and outer leaflets. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and sphingomyelin are some of the most common lipids most animal cell membranes. These lipids are widely different in charge, length, and saturation state. The presence of unsaturated bonds (double bonds) in lipids for example, creates a kink in acyl chains which further changes the lipid packing and results in a looser packing. Therefore, the composition and sizes of the unilamellar liposomes must be chosen carefully based on the subject of the study.

↑ Return to Menu