Linear molecular geometry in the context of "Conjugation (organic chemistry)"

Play Trivia Questions online!

or

Skip to study material about Linear molecular geometry in the context of "Conjugation (organic chemistry)"

Ad spacer

⭐ Core Definition: Linear molecular geometry

The linear molecular geometry describes the geometry around a central atom bonded to two other atoms (or ligands) placed at a bond angle of 180°. Linear organic molecules, such as acetylene (HC≡CH), are often described by invoking sp orbital hybridization for their carbon centers.

According to the VSEPR model (Valence Shell Electron Pair Repulsion model), linear geometry occurs at central atoms with two bonded atoms and zero or three lone pairs (AX2 or AX2E3) in the AXE notation. Neutral AX2 molecules with linear geometry include beryllium fluoride (F−Be−F) with two single bonds, carbon dioxide (O=C=O) with two double bonds, hydrogen cyanide (H−C≡N) with one single and one triple bond. The most important linear molecule with more than three atoms is acetylene (H−C≡C−H), in which each of its carbon atoms is considered to be a central atom with a single bond to one hydrogen and a triple bond to the other carbon atom. Linear anions include azide (N=N=N) and thiocyanate (S=C=N), and a linear cation is the nitronium ion (O=N=O).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Linear molecular geometry in the context of Conjugation (organic chemistry)

In physical organic chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented as having alternating single and multiple bonds. Lone pairs, radicals or carbenium ions may be part of the system, which may be cyclic, acyclic, linear or mixed. The term "conjugated" was coined in 1899 by the German chemist Johannes Thiele.

Conjugation is the overlap of one p-orbital with another across an adjacent σ bond. (In transition metals, d-orbitals can be involved.)

↓ Explore More Topics
In this Dossier

Linear molecular geometry in the context of Azide

In chemistry, azide (/ˈzd/, AY-zyd) is a linear, polyatomic anion with the formula N3 and structure N=N=N. It is the conjugate base of hydrazoic acid HN3. Organic azides are organic compounds with the formula RN3, containing the azide functional group. The dominant application of azides is as a propellant in air bags.

↑ Return to Menu