Lifting body in the context of "Induced drag"

Play Trivia Questions online!

or

Skip to study material about Lifting body in the context of "Induced drag"

Ad spacer

⭐ Core Definition: Lifting body

A lifting body is a fixed-wing aircraft or spacecraft configuration in which the body itself produces lift. In contrast to a flying wing, which is a wing with minimal or no conventional fuselage, a lifting body can be thought of as a fuselage with little or no conventional wing. Whereas a flying wing seeks to maximize cruise efficiency at subsonic speeds by eliminating non-lifting surfaces, lifting bodies generally minimize the drag and structure of a wing for subsonic, supersonic and hypersonic flight, or spacecraft re-entry. All of these flight regimes pose challenges for proper flight safety.

Lifting bodies were a major area of research in the 1960s and 1970s as a means to build a small and lightweight crewed spacecraft. The US built a number of lifting body rocket planes to test the concept, as well as several rocket-launched re-entry vehicles that were tested over the Pacific. Interest waned as the US Air Force lost interest in the crewed mission, and major development ended during the Space Shuttle design process when it became clear that the highly shaped fuselages made it difficult to fit fuel tankage.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Lifting body in the context of Induced drag

Lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, in aerodynamics, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air to cause a downforce. It is symbolized as , and the lift-induced drag coefficient as .

For a constant amount of lift, induced drag can be reduced by increasing airspeed. A counter-intuitive effect of this is that, up to the speed-for-minimum-drag, aircraft need less power to fly faster. Induced drag is also reduced when the wingspan is higher, or for wings with wingtip devices.

↓ Explore More Topics
In this Dossier

Lifting body in the context of Gliding flight

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a significant distance horizontally compared to its descent and therefore can be distinguished from a mostly straight downward descent like a round parachute.

Although the human application of gliding flight usually refers to aircraft designed for this purpose, most powered aircraft are capable of gliding without engine power. As with sustained flight, gliding generally requires the application of an airfoil, such as the wings on aircraft or birds, or the gliding membrane of a gliding possum. However, gliding can be achieved with a flat (uncambered) wing, as with a simple paper plane, or even with card-throwing. However, some aircraft with lifting bodies and animals such as the flying snake can achieve gliding flight without any wings by creating a flattened surface underneath.

↑ Return to Menu

Lifting body in the context of Eugen Sänger

Eugen Sänger (22 September 1905 – 10 February 1964) was an Austrian aerospace engineer best known for his contributions to lifting body and ramjet technology.

↑ Return to Menu

Lifting body in the context of Lift coefficient

In fluid dynamics, the lift coefficient (CL) is a dimensionless quantity that relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area. A lifting body is a foil or a complete foil-bearing body such as a fixed-wing aircraft. CL is a function of the angle of the body to the flow, its Reynolds number and its Mach number. The section lift coefficient cl refers to the dynamic lift characteristics of a two-dimensional foil section, with the reference area replaced by the foil chord.

↑ Return to Menu