Level of detail (computer graphics) in the context of Shader


Level of detail (computer graphics) in the context of Shader

Level of detail (computer graphics) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Level of detail (computer graphics) in the context of "Shader"


⭐ Core Definition: Level of detail (computer graphics)

In computer graphics, level of detail (LOD) refers to the complexity of a 3D model representation. LOD can be decreased as the model moves away from the viewer or according to other metrics such as object importance, viewpoint-relative speed or position.LOD techniques increase the efficiency of rendering by decreasing the workload on graphics pipeline stages, usually vertex transformations.The reduced visual quality of the model is often unnoticed because of the small effect on object appearance when distant or moving fast.

Although most of the time LOD is applied to geometry detail only, the basic concept can be generalized. Recently, LOD techniques also included shader management to keep control of pixel complexity.A form of level of detail management has been applied to texture maps for years, under the name of mipmapping, also providing higher rendering quality.

↓ Menu
HINT:

In this Dossier

Level of detail (computer graphics) in the context of Polygon mesh

In 3D computer graphics and solid modeling, a polygon mesh is a collection of vertices, edges and faces that defines the shape of a polyhedral object's surface. It simplifies rendering, as in a wire-frame model. The faces usually consist of triangles (triangle mesh), quadrilaterals (quads), or other simple convex polygons (n-gons). A polygonal mesh may also be more generally composed of concave polygons, or even polygons with holes.

The study of polygon meshes is a large sub-field of computer graphics (specifically 3D computer graphics) and geometric modeling. Different representations of polygon meshes are used for different applications and goals. The variety of operations performed on meshes includes Boolean logic (Constructive solid geometry), smoothing, and simplification. Algorithms also exist for ray tracing, collision detection, and rigid-body dynamics with polygon meshes. If the mesh's edges are rendered instead of the faces, then the model becomes a wireframe model.

View the full Wikipedia page for Polygon mesh
↑ Return to Menu

Level of detail (computer graphics) in the context of Cartographic generalization

Cartographic generalization, or map generalization, includes all changes in a map that are made when one derives a smaller-scale map from a larger-scale map or map data. It is a core part of cartographic design. Whether done manually by a cartographer or by a computer or set of algorithms, generalization seeks to abstract spatial information at a high level of detail to information that can be rendered on a map at a lower level of detail.

The cartographer has license to adjust the content within their maps to create a suitable and useful map that conveys spatial information, while striking the right balance between the map's purpose and the precise detail of the subject being mapped. Well generalized maps are those that emphasize the most important map elements while still representing the world in the most faithful and recognizable way.

View the full Wikipedia page for Cartographic generalization
↑ Return to Menu