Legendre transformation in the context of "Thermodynamic free energy"

Play Trivia Questions online!

or

Skip to study material about Legendre transformation in the context of "Thermodynamic free energy"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Legendre transformation in the context of Thermodynamic free energy

In thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system. The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point. Therefore, only relative free energy values, or changes in free energy, are physically meaningful.

The free energy is the portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i.e., work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. Since first-law energy is always conserved, it is evident that free energy is an expendable, second-law kind of energy. Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy.

↓ Explore More Topics
In this Dossier

Legendre transformation in the context of Thermodynamic potential

A thermodynamic potential (or more accurately, a thermodynamic potential energy) is a scalar quantity used to represent the thermodynamic state of a system. Just as in mechanics, where potential energy is defined as capacity to do work, similarly different potentials have different meanings. The concept of thermodynamic potentials was introduced by Pierre Duhem in 1886. Josiah Willard Gibbs in his papers used the term fundamental functions. Effects of changes in thermodynamic potentials can sometimes be measured directly, while their absolute magnitudes can only be assessed using computational chemistry or similar methods.

One main thermodynamic potential that has a physical interpretation is the internal energy U. It is the energy of configuration of a given system of conservative forces (that is why it is called potential) and only has meaning with respect to a defined set of references (or data). Expressions for all other thermodynamic energy potentials are derivable via Legendre transforms from an expression for U. In other words, each thermodynamic potential is equivalent to other thermodynamic potentials; each potential is a different expression of the others.

↑ Return to Menu