LIGO in the context of MIT


LIGO in the context of MIT

LIGO Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about LIGO in the context of "MIT"


⭐ Core Definition: LIGO

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Prior to LIGO, all data about the universe has come in the form of light and other forms of electromagnetic radiation, from limited direct exploration on relatively nearby Solar System objects such as the Moon, Mars, Venus, Jupiter and their moons, asteroids etc, and from high energy cosmic particles. Initially, two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. Two additional, smaller gravitational wave observatories are now operational in Japan (KAGRA) and Italy (Virgo). The two LIGO observatories use mirrors spaced 4 km apart to measure changes in length—over an effective span of 1120 km—of less than one ten-thousandth the charge diameter of a proton.

The initial LIGO observatories were funded by the United States National Science Foundation (NSF). They were conceived, built, and are operated by Caltech and MIT. They collected data from 2002 to 2010, but no gravitational waves were detected during that period.

↓ Menu
HINT:

In this Dossier

LIGO in the context of GW150914

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of two black holes (of 36 M and 29 M) and the subsequent ringdown of a single, 62 M black hole remnant. The signal was named GW150914 (from gravitational wave and the date of observation 2015-09-14). It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

This first direct observation was reported around the world as a remarkable accomplishment for many reasons. Efforts to directly prove the existence of such waves had been ongoing for over fifty years, and the waves are so minuscule that Albert Einstein himself doubted that they could ever be detected. The waves given off by the cataclysmic merger of GW150914 reached Earth as a ripple in spacetime that changed the length of a 1,120 km LIGO effective span by a thousandth of the width of a proton, proportionally equivalent to changing the distance to the nearest star outside the Solar System by one hair's width. The energy released by the binary as it spiralled together and merged was immense, with the energy of 3.0+0.5
−0.5
cM (5.3+0.9
−0.8
×10 joules or 5300+900
−800
foes) in total radiated as gravitational waves, reaching a peak emission rate in its final few milliseconds of about 3.6+0.5
−0.4
×10 watts – a level greater than the combined power of all light radiated by all the stars in the observable universe.

View the full Wikipedia page for GW150914
↑ Return to Menu

LIGO in the context of Michelson interferometer

The Michelson interferometer is a common configuration for optical interferometry and was invented by the American physicist Albert Abraham Michelson in 1887. Using a beam splitter, a light source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the superposition principle. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or camera. For different applications of the interferometer, the two light paths can be with different lengths or incorporate optical elements or even materials under test.

The Michelson interferometer is employed in many scientific experiments and became well known for its use by Michelson and Edward Morley in the famous Michelson–Morley experiment (1887) in a configuration which would have detected the Earth's motion through the supposed luminiferous aether that most physicists at the time believed was the medium in which light waves propagated. The null result of that experiment essentially disproved the existence of such an aether, leading eventually to the special theory of relativity and the revolution in physics at the beginning of the twentieth century. In 2015, another application of the Michelson interferometer, LIGO, made the first direct observation of gravitational waves. That observation confirmed an important prediction of general relativity, validating the theory's prediction of space-time distortion in the context of large scale cosmic events (known as strong field tests).

View the full Wikipedia page for Michelson interferometer
↑ Return to Menu

LIGO in the context of Kip Thorne

Kip Stephen Thorne (born June 1, 1940) is an American theoretical physicist and writer known for his contributions in gravitational physics and astrophysics. Along with Rainer Weiss and Barry C. Barish, he was awarded the 2017 Nobel Prize in Physics for his contributions to the LIGO detector and the observation of gravitational waves.

A longtime friend and colleague of Stephen Hawking and Carl Sagan, he was the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology (Caltech) from 1991 until 2009. He has spoken about the astrophysical implications of the general theory of relativity. He was a scientific consultant for the Christopher Nolan films Interstellar and Tenet.

View the full Wikipedia page for Kip Thorne
↑ Return to Menu

LIGO in the context of Virgo interferometer

The Virgo interferometer is a large-scale scientific instrument near Pisa, Italy, for detecting gravitational waves. The detector is a Michelson interferometer, which can detect the minuscule length variations in its two 3 km (1.9 mi) arms induced by the passage of gravitational waves. The required precision is achieved using many systems to isolate it from the outside world, including keeping its mirrors and instrumentation in an ultra-high vacuum and suspending them using complex systems of pendula.

Between its periodic observations, the detector is upgraded to increase its sensitivity. The observation runs are performed in collaboration with other similar detectors, including the two Laser Interferometer Gravitational-Wave Observatories (LIGO) in the United States and the Japanese Kamioka Gravitational Wave Detector (KAGRA), because cooperation between several detectors is crucial for detecting gravitational waves and pinpointing their origin.

View the full Wikipedia page for Virgo interferometer
↑ Return to Menu