Gravitational wave in the context of "Michelson interferometer"

Play Trivia Questions online!

or

Skip to study material about Gravitational wave in the context of "Michelson interferometer"

Ad spacer

⭐ Core Definition: Gravitational wave

Gravitational waves are waves of spacetime distortion and curvature that propagate at the speed of light; these are produced by relative motion between gravitating masses. They were proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves. In 1916, Albert Einstein demonstrated that gravitational waves result from his general theory of relativity as "ripples in spacetime".

Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, instead asserting that gravity has instantaneous effect everywhere. Gravitational waves therefore stand as an important relativistic phenomenon that is absent from Newtonian physics.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Gravitational wave in the context of Pulsar

A pulsar (pulsating star, on the model of quasar) is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth (similar to the way a lighthouse can be seen only when the light is pointed in the direction of an observer), and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays (see also centrifugal mechanism of acceleration).

Pulsars’ highly regular pulses make them very useful tools for astronomers. For example, observations of a pulsar in a binary neutron star system were used to indirectly confirm the existence of gravitational radiation. The first extrasolar planets were discovered in 1992 around a pulsar, specifically PSR B1257+12. In 1983, certain types of pulsars were detected that, at that time, exceeded the accuracy of atomic clocks in keeping time.

↑ Return to Menu

Gravitational wave in the context of Theory of relativity

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

The theory transformed theoretical physics and astronomy during the 20th century, superseding a 200-year-old theory of mechanics created primarily by Isaac Newton. It introduced concepts including 4-dimensional spacetime as a unified entity of space and time, relativity of simultaneity, kinematic and gravitational time dilation, and length contraction. In the field of physics, relativity improved the science of elementary particles and their fundamental interactions, along with ushering in the nuclear age. With relativity, cosmology and astrophysics predicted extraordinary astronomical phenomena such as neutron stars, black holes, and gravitational waves.

↑ Return to Menu

Gravitational wave in the context of Polarization (waves)

Polarization, or polarisation, is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. One example of a polarized transverse wave is vibrations traveling along a taut string, for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves (shear waves) in solids.

An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field that are always perpendicular to each other. Different states of polarization correspond to different relationships between the directions of the fields and the direction of propagation. In linear polarization, the electric and magnetic fields each oscillate in a single direction, perpendicular to one another. In circular or elliptical polarization, the fields rotate around the beam's direction of travel at a constant rate. The rotation can be either in the right-hand or in the left-hand direction.

↑ Return to Menu

Gravitational wave in the context of Gravitational-wave astronomy

Gravitational-wave astronomy is a subfield of astronomy concerned with the detection and study of gravitational waves emitted by astrophysical sources.

Gravitational waves are minute distortions or ripples in spacetime caused by the acceleration of massive objects. They are produced by cataclysmic events such as the merger of binary black holes, the coalescence of binary neutron stars, supernova explosions and processes including those of the early universe shortly after the Big Bang. Studying them offers a new way to observe the universe, providing valuable insights into the behavior of matter under extreme conditions. Similar to electromagnetic radiation (such as light wave, radio wave, infrared radiation and X-rays) which involves transport of energy via propagation of electromagnetic field fluctuations, gravitational radiation involves fluctuations of the relatively weaker gravitational field. The existence of gravitational waves was first suggested by Oliver Heaviside in 1893 and then later conjectured by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves before they were predicted by Albert Einstein in 1916 as a corollary to his theory of general relativity.

↑ Return to Menu

Gravitational wave in the context of Binary black hole

A binary black hole (BBH), or black hole binary, is an astronomical object consisting of two black holes in close orbit around each other. Like black holes themselves, binary black hole systems are classified as either stellar-mass—involving remnants of high-mass binary star systems or formed by dynamic processes and mutual capture—or supermassive, black hole systems believed to arise from galactic mergers.

The existence of stellar-mass binary black holes was directly confirmed by gravitational wave observation in September 2015. Supermassive binary black hole candidates have been proposed based on indirect evidence, but await observational confirmation.

↑ Return to Menu

Gravitational wave in the context of Extragalactic astronomy

Extragalactic astronomy is the branch of astronomy concerned with objects outside the Milky Way galaxy. In other words, it is the study of all astronomical objects which are not covered by galactic astronomy.

The closest objects in extragalactic astronomy include the galaxies of the Local Group, which are close enough to allow very detailed analyses of their contents (e.g. supernova remnants, stellar associations). As instrumentation has improved, distant objects can now be examined in more detail and so extragalactic astronomy includes objects at nearly the edge of the observable universe. Research into distant galaxies (outside of our local group) is valuable for studying aspects of the universe such as galaxy evolution and Active Galactic Nuclei (AGN) which give insight into physical phenomena (e.g. super massive black hole accretion and the presence of dark matter). It is through extragalactic astronomy that astronomers and physicists are able to study the effects of General Relativity such as gravitational lensing and gravitational waves, that are otherwise impossible (or nearly impossible) to study on a galactic scale.

↑ Return to Menu

Gravitational wave in the context of GW150914

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of two black holes (of 36 M and 29 M) and the subsequent ringdown of a single, 62 M black hole remnant. The signal was named GW150914 (from gravitational wave and the date of observation 2015-09-14). It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

This first direct observation was reported around the world as a remarkable accomplishment for many reasons. Efforts to directly prove the existence of such waves had been ongoing for over fifty years, and the waves are so minuscule that Albert Einstein himself doubted that they could ever be detected. The waves given off by the cataclysmic merger of GW150914 reached Earth as a ripple in spacetime that changed the length of a 1,120 km LIGO effective span by a thousandth of the width of a proton, proportionally equivalent to changing the distance to the nearest star outside the Solar System by one hair's width. The energy released by the binary as it spiralled together and merged was immense, with the energy of 3.0+0.5
−0.5
cM (5.3+0.9
−0.8
×10 joules or 5300+900
−800
foes) in total radiated as gravitational waves, reaching a peak emission rate in its final few milliseconds of about 3.6+0.5
−0.4
×10 watts – a level greater than the combined power of all light radiated by all the stars in the observable universe.

↑ Return to Menu