Ventilation is the intentional introduction of outdoor air into a space, mainly to control indoor air quality by diluting and displacing indoor effluents and pollutants. It can also be used to control indoor temperature, humidity, and air motion to benefit thermal comfort, satisfaction with other aspects of the indoor environment, or other objectives. Ventilation is usually categorized as either mechanical ventilation, natural ventilation, or mixed-mode ventilation. It is typically described as separate from infiltration, the circumstantial flow of air from outdoors to indoors through leaks (unplanned openings) in a building envelope. When a building design relies on infiltration to maintain indoor air quality, this flow has been referred to as adventitious ventilation.
Although ventilation is an integral component of maintaining good indoor air quality, it may not be satisfactory alone. A clear understanding of both indoor and outdoor air quality parameters is needed to improve the performance of ventilation in terms of occupant health and energy. In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary. In kitchen ventilation systems, or for laboratory fume hoods, the design of effective effluent capture can be more important than the bulk amount of ventilation in a space. More generally, the way that an air distribution system causes ventilation to flow into and out of a space impacts the ability of a particular ventilation rate to remove internally generated pollutants. The ability of a system to reduce pollution in space is described as its "ventilation effectiveness". However, the overall impacts of ventilation on indoor air quality can depend on more complex factors such as the sources of pollution, and the ways that activities and airflow interact to affect occupant exposure.