KeV in the context of "Units of energy"

Play Trivia Questions online!

or

Skip to study material about KeV in the context of "Units of energy"

Ad spacer

⭐ Core Definition: KeV

In physics, an electronvolt (symbol eV), also written as electron-volt and electron volt, is a unit of measurement equivalent to the amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in a vacuum. When used as a unit of energy, the numerical value of 1 eV expressed in unit of joules (symbol J) is equal to the numerical value of the charge of an electron in coulombs (symbol C). Under the 2019 revision of the SI, this sets 1 eV equal to the exact value 1.602176634×10 J.Historically, the electronvolt was devised as a standard unit of measure through its usefulness in electrostatic particle accelerator sciences, because a particle with electric charge q gains an energy E = qV after passing through a voltage of V.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

KeV in the context of X-ray

An X-ray is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ranging from 10 nanometers to 10 picometers, corresponding to frequencies in the range of 30 petahertz to 30 exahertz (3×10 Hz to 3×10 Hz) and photon energies in the range of 100 eV to 100 keV, respectively.

X-rays were discovered in 1895 by the German scientist Wilhelm Conrad Röntgen, who named it X-radiation to signify an unknown type of radiation.

↑ Return to Menu

KeV in the context of Collision cascade

In condensed-matter physics, a collision cascade (also known as a displacement cascade or a displacement spike) is a set of nearby adjacent energetic (much higher than ordinary thermal energies) collisions of atoms induced by an energetic particle in a solid or liquid.

If the maximum atom or ion energies in a collision cascade are higher than the threshold displacement energy of the material (tens of eVs or more), the collisions can permanently displace atoms from their lattice sites and produce defects. The initial energetic atom can be, e.g., an ion from a particle accelerator, an atomic recoil produced by a passing high-energy neutron, electron or photon, or be produced when a radioactive nucleus decays and gives the atom a recoil energy.

↑ Return to Menu