Isotope of uranium in the context of Standard atomic weight


Isotope of uranium in the context of Standard atomic weight

Isotope of uranium Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Isotope of uranium in the context of "Standard atomic weight"


⭐ Core Definition: Isotope of uranium

Uranium (92U) is a naturally occurring radioactive element (radioelement) with no stable isotopes. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from U to U (except for U). The standard atomic weight of natural uranium is 238.02891(3).

Natural uranium consists of three main isotopes, U (99.2739–99.2752% natural abundance), U (0.7198–0.7202%), and U (0.0050–0.0059%). All three isotopes are radioactive (i.e., they are radioisotopes), and the most abundant and stable is uranium-238, with a half-life of 4.463×10 years (about the age of the Earth).

↓ Menu
HINT:

In this Dossier

Isotope of uranium in the context of Uranium-238

Uranium-238 (
U
or U-238) is the most common isotope of uranium found in nature, with a relative abundance above 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239. U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control.

The isotope has a half-life of 4.463 billion years (1.408×10 s). Due to its abundance and half-life relative rate of decay to other radioactive elements, U is responsible for about 40% of the radioactive heat produced within the Earth. The U decay chain contributes six electron anti-neutrinos per U nucleus (one per beta decay), resulting in a large detectable geoneutrino signal when decays occur within the Earth. The decay of U to daughter isotopes is extensively used in radiometric dating, particularly for material older than approximately 1 million years.

View the full Wikipedia page for Uranium-238
↑ Return to Menu

Isotope of uranium in the context of Uranium-235

Uranium-235 (
U
or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide.

Uranium-235 has a half-life of 704 million years. It was discovered in 1935 by Arthur Jeffrey Dempster. Its fission cross section for slow thermal neutrons is about 584.3±1 barns. For fast neutrons it is on the order of 1 barn.Most neutron absorptions induce fission, though a minority (about 15%) result in the formation of uranium-236.

View the full Wikipedia page for Uranium-235
↑ Return to Menu

Isotope of uranium in the context of Uranium-236

Uranium-236 (U or U-236) is an isotope of uranium that is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in the reprocessed uranium made from spent nuclear fuel.

View the full Wikipedia page for Uranium-236
↑ Return to Menu

Isotope of uranium in the context of Uranium-233

Uranium-233 (
U
or U-233) is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel. It has been used successfully in experimental nuclear reactors and has been proposed for much wider use as a nuclear fuel. It has a half-life of 159,200 years to alpha decay and is a part of the neptunium decay chain.

Uranium-233 is produced by the neutron irradiation of thorium-232. When thorium-232 absorbs a neutron, it becomes thorium-233, which has a half-life of about 22 minutes. Thorium-233 decays into protactinium-233 through beta decay. Protactinium-233 has a longer half-life of about 27 days to further decay into uranium-233; some proposed molten salt reactor designs attempt to physically isolate the protactinium from further neutron capture before beta decay can occur, to maintain the neutron economy (if it misses the U window, the next fissile target is U, meaning a total of 4 neutrons needed to trigger fission).

View the full Wikipedia page for Uranium-233
↑ Return to Menu

Isotope of uranium in the context of Uranium-234

Uranium-234 (
U
or U-234) is an isotope of uranium. In natural uranium and in uranium ore, U occurs as an indirect decay product of uranium-238, but it makes up only 0.0055% (55 parts per million, or 1/18,000) of the raw uranium because its half-life of just 245,500 years is only about 1/18,000 as long as that of U. Thus the ratio of
U
to
U
in a natural sample is equivalent to the ratio of their half-lives. The primary path of production of U via nuclear decay is as follows: uranium-238 nuclei emit an alpha particle to become thorium-234. Next, with a short half-life, Th nuclei emit a beta particle to become protactinium-234 (Pa or more usually the isomer Pa). Finally, Pa or Pa nuclei emit another beta particle to become U nuclei.

Uranium-234 nuclei decay by alpha emission to thorium-230, except for the tiny fraction (here less than 2 per trillion) of nuclei that undergo spontaneous fission.

View the full Wikipedia page for Uranium-234
↑ Return to Menu