Isometry in the context of Riesz representation theorem


Isometry in the context of Riesz representation theorem

Isometry Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Isometry in the context of "Riesz representation theorem"


⭐ Core Definition: Isometry

In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion.

↓ Menu
HINT:

In this Dossier

Isometry in the context of Smooth surface

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric.

Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

View the full Wikipedia page for Smooth surface
↑ Return to Menu

Isometry in the context of Glide symmetry

In geometry, a glide reflection or transflection is a geometric transformation that consists of a reflection across a hyperplane and a translation ("glide") in a direction parallel to that hyperplane, combined into a single transformation.

Because the distances between points are not changed under glide reflection, it is a motion or isometry. When the context is the two-dimensional Euclidean plane, the hyperplane of reflection is a straight line called the glide line or glide axis. When the context is three-dimensional space, the hyperplane of reflection is a plane called the glide plane. The displacement vector of the translation is called the glide vector.

View the full Wikipedia page for Glide symmetry
↑ Return to Menu

Isometry in the context of Central symmetry

In geometry, a point reflection (also called a point inversion or central inversion) is a geometric transformation of affine space in which every point is reflected across a designated inversion center, which remains fixed. In Euclidean or pseudo-Euclidean spaces, a point reflection is an isometry (preserves distance). In the Euclidean plane, a point reflection is the same as a half-turn rotation (180° or π radians), while in three-dimensional Euclidean space a point reflection is an improper rotation which preserves distances but reverses orientation. A point reflection is an involution: applying it twice is the identity transformation.

An object that is invariant under a point reflection is said to possess point symmetry (also called inversion symmetry or central symmetry). A point group including a point reflection among its symmetries is called centrosymmetric. Inversion symmetry is found in many crystal structures and molecules, and has a major effect upon their physical properties.

View the full Wikipedia page for Central symmetry
↑ Return to Menu

Isometry in the context of Congruence (geometry)

In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.

More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. Therefore, two distinct plane figures on a piece of paper are congruent if they can be cut out and then matched up completely. Turning the paper over is permitted.

View the full Wikipedia page for Congruence (geometry)
↑ Return to Menu

Isometry in the context of Vertex-transitive

In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

Technically, one says that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope acts transitively on its vertices, or that the vertices lie within a single symmetry orbit.

View the full Wikipedia page for Vertex-transitive
↑ Return to Menu

Isometry in the context of Reflection (mathematics)

In mathematics, a reflection (also spelled reflexion) is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis (a vertical reflection) would look like q. Its image by reflection in a horizontal axis (a horizontal reflection) would look like b. A reflection is an involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state.

The term reflection is sometimes used for a larger class of mappings from a Euclidean space to itself, namely the non-identity isometries that are involutions. The set of fixed points (the "mirror") of such an isometry is an affine subspace, but is possibly smaller than a hyperplane. For instance a reflection through a point is an involutive isometry with just one fixed point; the image of the letter p under itwould look like a d. This operation is also known as a central inversion (Coxeter 1969, §7.2), and exhibits Euclidean space as a symmetric space. In a Euclidean vector space, the reflection in the point situated at the origin is the same as vector negation. Other examples include reflections in a line in three-dimensional space. Typically, however, unqualified use of the term "reflection" means reflection in a hyperplane.

View the full Wikipedia page for Reflection (mathematics)
↑ Return to Menu

Isometry in the context of Translation (geometry)

In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry.

View the full Wikipedia page for Translation (geometry)
↑ Return to Menu

Isometry in the context of Motion (geometry)

In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion.

Motions can be divided into direct (also known as proper or rigid) and indirect (or improper) motions.Direct motions include translations and rotations, which preserve the orientation of a chiral shape.Indirect motions include reflections, glide reflections, and Improper rotations, that invert the orientation of a chiral shape.Some geometers define motion in such a way that only direct motions are motions.

View the full Wikipedia page for Motion (geometry)
↑ Return to Menu

Isometry in the context of Invariant (mathematics)

In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class.

Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important step in the process of classifying mathematical objects.

View the full Wikipedia page for Invariant (mathematics)
↑ Return to Menu

Isometry in the context of Three-dimensional rotation

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation (i.e., handedness of space). Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the definition of a rotation. Owing to the above properties (along composite rotations' associative property), the set of all rotations is a group under composition.

View the full Wikipedia page for Three-dimensional rotation
↑ Return to Menu

Isometry in the context of Isometry group

In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element is the identity function. The elements of the isometry group are sometimes called motions of the space.

Every isometry group of a metric space is a subgroup of isometries. It represents in most cases a possible set of symmetries of objects/figures in the space, or functions defined on the space. See symmetry group.

View the full Wikipedia page for Isometry group
↑ Return to Menu

Isometry in the context of Improper rotation

In geometry, an improper rotation (also called rotation-reflection, rotoreflection, rotary reflection, or rotoinversion) is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicular to that axis. Reflection and inversion are each a special case of improper rotation. Any improper rotation is an affine transformation and, in cases that keep the coordinate origin fixed, a linear transformation.It is used as a symmetry operation in the context of geometric symmetry, molecular symmetry and crystallography, where an object that is unchanged by a combination of rotation and reflection is said to have improper rotation symmetry.

It is important to note the distinction between rotary reflection and rotary inversion symmetry operations and their associated symmetry elements. Rotary reflections are generally used to describe the symmetry of individual molecules and are defined as a 360°/n rotation about an n-fold rotation axis followed by a reflection over a mirror plane perpendicular to the n-fold rotation axis. Rotoinversions are generally used to describe the symmetry of crystals and are defined as a 360°/n rotation about an n-fold rotation axis followed by an inversion through the origin. Although rotary reflection operations have a rotoinversion analogue and vice versa, rotoreflections and rotoinversions of the same order need not be identical. For example, a 6-fold rotoinversion axis and its associated with symmetry operations are distinct from those resulting from a 6-fold reflection axis.

View the full Wikipedia page for Improper rotation
↑ Return to Menu

Isometry in the context of Point group

In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d). Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules.

Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx. Each element of a point group is either a rotation (determinant of M = 1), or it is a reflection or improper rotation (determinant of M = −1).

View the full Wikipedia page for Point group
↑ Return to Menu