Interstellar object in the context of "Long-period comet"

Play Trivia Questions online!

or

Skip to study material about Interstellar object in the context of "Long-period comet"




⭐ Core Definition: Interstellar object

An interstellar object is an astronomical object in interstellar space, not gravitationally bound to a star. The term is used for objects including some asteroids, some comets, and rogue planets, but not stars or stellar remnants. The interstellar objects were once bound to a host star and have become unbound since. Different processes can cause planets and smaller objects (planetesimals) to become unbound from their host star.

This term is also applied to an object that is on an interstellar trajectory but is temporarily passing close to a star, such as some asteroids and comets (that is, exoasteroids and exocomets). In this case the object may be called an interstellar interloper. Objects observed within the solar system are identified as interstellar interlopers due to possessing significant hyperbolic excess velocity, indicating they did not originate in the solar system.

↓ Menu

In this Dossier

Interstellar object in the context of Comet

A comet is an icy, small Solar System body or interstellar object that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or coma surrounding the nucleus, and sometimes a tail of gas and dust gas blown out from the coma. These phenomena are due to the effects of solar radiation and the outstreaming solar wind plasma acting upon the nucleus of the comet. Comet nuclei range from a few hundred meters to tens of kilometers across and are composed of loose collections of ice, dust, and small rocky particles. The coma may be up to 15 times Earth's diameter, while the tail may stretch beyond one astronomical unit. If sufficiently close and bright, a comet may be seen from Earth without the aid of a telescope and can subtend an arc of up to 30° (60 Moons) across the sky. Comets have been observed and recorded since ancient times by many cultures and religions.

Comets usually have highly eccentric elliptical orbits, and they have a wide range of orbital periods, ranging from several years to potentially several millions of years. Short-period comets originate in the Kuiper belt or its associated scattered disc, which lie beyond the orbit of Neptune. Long-period comets are thought to originate in the Oort cloud, a spherical cloud of icy bodies extending from outside the Kuiper belt to halfway to the nearest star. Long-period comets are set in motion towards the Sun by gravitational perturbations from passing stars and the galactic tide. Hyperbolic comets may pass once through the inner Solar System before being flung to interstellar space. The appearance of a comet is called an apparition.

↑ Return to Menu

Interstellar object in the context of Rogue planet

A rogue planet, also termed a free-floating planet (FFP) or an isolated planetary-mass object (iPMO), is an interstellar object of planetary mass which is not gravitationally bound to any star or brown dwarf.

Rogue planets may originate from planetary systems in which they are formed and later ejected, or they can also form on their own, outside a planetary system. The Milky Way alone may have billions to trillions of rogue planets, a range the upcoming Nancy Grace Roman Space Telescope is expected to refine. The odds of a rogue planet entering the solar system, much less posing a direct threat to life on Earth are slim to none with the odds being about one in one trillion within the next 1,000 years.

↑ Return to Menu

Interstellar object in the context of 1I/ʻOumuamua

1I/ʻOumuamua is the first confirmed interstellar object detected passing through the Solar System. Formally designated 1I/2017 U1, it was discovered by Canadian Robert Weryk using the Pan-STARRS telescope at Haleakalā Observatory, Hawaii, on 19 October 2017, approximately 40 days after it passed its closest point to the Sun on 9 September. When it was first observed, it was about 33 million km (21 million mi; 0.22 AU) from Earth (about 85 times as far away as the Moon) and already heading away from the Sun.

ʻOumuamua is a small object estimated to be between 100 and 1,000 metres (300 and 3,000 ft) long, with its width and thickness both estimated between 35 and 167 metres (115 and 548 ft). It has a red color, like objects in the outer Solar System. Despite its close approach to the Sun, it showed no signs of having a coma, the usual nebula around comets formed when they pass near the Sun. Further, it exhibited non‑gravitational acceleration, potentially due to outgassing or a push from solar radiation pressure. It has a rotation rate similar to the Solar System's asteroids, but many valid models permit it to be unusually more elongated than all but a few other natural bodies observed in the solar system. This feature raised speculation about its origin. Its light curve, assuming little systematic error, presents its motion as "tumbling" rather than "spinning", and moving sufficiently fast relative to the Sun that it is likely of extrasolar origin. Extrapolated and without further deceleration, its path cannot be captured into a solar orbit, so it will eventually leave the Solar System and continue into interstellar space. Its planetary system of origin and age are unknown.

↑ Return to Menu