Intersection of a polyhedron with a line in the context of "Intersection (Euclidean geometry)"

Play Trivia Questions online!

or

Skip to study material about Intersection of a polyhedron with a line in the context of "Intersection (Euclidean geometry)"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Intersection of a polyhedron with a line in the context of Intersection (Euclidean geometry)

In geometry, an intersection between geometric objects (seen as sets of points) is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or empty (if the lines are parallel). Other types of geometric intersection include:

Determination of the intersection of flats – linear geometric objects embedded in a higher-dimensional space – is a simple task of linear algebra, namely the solution of a system of linear equations. In general the determination of an intersection leads to non-linear equations, which can be solved numerically, for example using Newton iteration. Intersection problems between a line and a conic section (circle, ellipse, parabola, etc.) or a quadric (sphere, cylinder, hyperboloid, etc.) lead to quadratic equations that can be easily solved. Intersections between quadrics lead to quartic equations that can be solved algebraically.

↓ Explore More Topics
In this Dossier

Intersection of a polyhedron with a line in the context of Intersection (geometry)

In geometry, an intersection between geometric objects (seen as sets of points) is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types of geometric intersection include:

Determination of the intersection of flats – linear geometric objects embedded in a higher-dimensional space – is a simple task of linear algebra, namely the solution of a system of linear equations. In general the determination of an intersection leads to non-linear equations, which can be solved numerically, for example using Newton iteration. Intersection problems between a line and a conic section (circle, ellipse, parabola, etc.) or a quadric (sphere, cylinder, hyperboloid, etc.) lead to quadratic equations that can be easily solved. Intersections between quadrics lead to quartic equations that can be solved algebraically.

↑ Return to Menu