Internet protocol suite in the context of Communication session


Internet protocol suite in the context of Communication session

Internet protocol suite Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Internet protocol suite in the context of "Communication session"


⭐ Core Definition: Internet protocol suite

The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Protocol (IP). Early versions of this networking model were known as the Department of Defense (DoD) Internet Architecture Model because the research and development were funded by the Defense Advanced Research Projects Agency (DARPA) of the United States Department of Defense.

The Internet protocol suite provides end-to-end data communication specifying how data should be packetized, addressed, transmitted, routed, and received. This functionality is organized into four abstraction layers, which classify all related protocols according to each protocol's scope of networking. An implementation of the layers for a particular application forms a protocol stack. From lowest to highest, the layers are the link layer, containing communication methods for data that remains within a single network segment (link); the internet layer, providing internetworking between independent networks; the transport layer, handling host-to-host communication; and the application layer, providing process-to-process data exchange for applications.

↓ Menu
HINT:

In this Dossier

Internet protocol suite in the context of Internet

The Internet (or internet) is the global system of interconnected computer networks that uses the Internet protocol suite (TCP/IP) to communicate between networks and devices. It is a network of networks that comprises private, public, academic, business, and government networks of local to global scope, linked by electronic, wireless, and optical networking technologies. The Internet carries a vast range of information services and resources, such as the interlinked hypertext documents and applications of the World Wide Web (WWW), electronic mail, internet telephony, streaming media and file sharing.

Most traditional communication media, including telephone, radio, television, paper mail, newspapers, and print publishing, have been transformed by the Internet, giving rise to new media such as email, online music, digital newspapers, news aggregators, and audio and video streaming websites. The Internet has enabled and accelerated new forms of personal interaction through instant messaging, Internet forums, and social networking services. Online shopping has also grown to occupy a significant market across industries, enabling firms to extend brick and mortar presences to serve larger markets. Business-to-business and financial services on the Internet affect supply chains across entire industries.

View the full Wikipedia page for Internet
↑ Return to Menu

Internet protocol suite in the context of History of the Internet

The history of the Internet originated in the efforts of scientists and engineers to build and interconnect computer networks. The Internet Protocol Suite, the set of rules used to communicate between networks and devices on the Internet, arose from research and development in the United States and involved international collaboration, particularly with researchers in the United Kingdom and France.

Computer science was an emerging discipline in the late 1950s that began to consider time-sharing between computer users, and later, the possibility of achieving this over wide area networks. J. C. R. Licklider developed the idea of a universal network at the Information Processing Techniques Office (IPTO) of the United States Department of Defense (DoD) Advanced Research Projects Agency (ARPA). Independently, Paul Baran at the RAND Corporation proposed a distributed network based on data in message blocks in the early 1960s, and Donald Davies conceived of packet switching in 1965 at the National Physical Laboratory (NPL), proposing a national commercial data network in the United Kingdom.

View the full Wikipedia page for History of the Internet
↑ Return to Menu

Internet protocol suite in the context of Webcam

A webcam is a video camera which is designed to record or stream to a computer or computer network. They are primarily used in video telephony, live streaming and social media, and security. Webcams can be built-in computer hardware, like a laptop, or peripheral devices, and are commonly connected to a device using USB or wireless protocol.

Webcams have been used on the Internet as early as 1993, and the first widespread commercial one became available in 1994. Early webcam usage on the Internet was primarily limited to stationary shots streamed to web sites. In the late 1990s and early 2000s, instant messaging clients added support for webcams, increasing their popularity in video conferencing. Computer manufacturers later started integrating webcams into laptop hardware. In 2020, the COVID-19 pandemic caused a shortage of webcams due to the increased number of people working from home and children attending school remotely.

View the full Wikipedia page for Webcam
↑ Return to Menu

Internet protocol suite in the context of Session (computer science)

In computer science and networking in particular, a session is a time-delimited two-way link, a practical (relatively high) layer in the TCP/IP protocol enabling interactive expression and information exchange between two or more communication devices or ends – be they computers, automated systems, or live active users (see login session). A session is established at a certain point in time, and then ‘torn down’ - brought to an end - at some later point. An established communication session may involve more than one message in each direction. A session is typically stateful, meaning that at least one of the communicating parties needs to hold current state information and save information about the session history to be able to communicate, as opposed to stateless communication, where the communication consists of independent requests with responses.

An established session is the basic requirement to perform a connection-oriented communication. A session also is the basic step to transmit in connectionless communication modes. However, any unidirectional transmission does not define a session.

View the full Wikipedia page for Session (computer science)
↑ Return to Menu

Internet protocol suite in the context of Internet Protocol

The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

IP has the task of delivering packets from the source host to the destination host solely based on the IP addresses in the packet headers. For this purpose, IP defines packet structures that encapsulate the data to be delivered. It also defines addressing methods that are used to label the datagram with source and destination information.IP was the connectionless datagram service in the original Transmission Control Program introduced by Vint Cerf and Bob Kahn in 1974, which was complemented by a connection-oriented service that became the basis for the Transmission Control Protocol (TCP). The Internet protocol suite is therefore often referred to as TCP/IP.

View the full Wikipedia page for Internet Protocol
↑ Return to Menu

Internet protocol suite in the context of HTTP

HTTP (Hypertext Transfer Protocol) is an application layer protocol in the Internet protocol suite for distributed, collaborative, hypermedia information systems. HTTP is the foundation of data communication for the World Wide Web, where hypertext documents include hyperlinks to other resources that the user can easily access, for example by a mouse click or by tapping the screen in a web browser.

HTTP is a request–response protocol in the client–server model. A transaction starts with a client submitting a request to the server, the server attempts to satisfy the request and returns a response to the client that describes the disposition of the request and optionally contains a requested resource such as an HTML document or other content.

View the full Wikipedia page for HTTP
↑ Return to Menu

Internet protocol suite in the context of Public Internet

The Internet (or internet) is the global system of interconnected computer networks that uses the Internet protocol suite (TCP/IP) to communicate between networks and devices. It is a network of networks that comprises private, public, academic, business, and government networks of local to global scope, linked by electronic, wireless, and optical networking technologies. The Internet carries a vast range of information services and resources, such as the interlinked hypertext documents and applications of the World Wide Web (WWW), electronic mail, discussion groups, internet telephony, streaming media and file sharing.

Most traditional communication media, including telephone, radio, television, paper mail, newspapers, and print publishing, have been transformed by the Internet, giving rise to new media such as email, online music, digital newspapers, news aggregators, and audio and video streaming websites. The Internet has enabled and accelerated new forms of personal interaction through instant messaging, Internet forums, and social networking services. Online shopping has also grown to occupy a significant market across industries, enabling firms to extend brick and mortar presences to serve larger markets. Business-to-business and financial services on the Internet affect supply chains across entire industries.

View the full Wikipedia page for Public Internet
↑ Return to Menu

Internet protocol suite in the context of Host (network)

A network host is a computer or other device connected to a computer network. A host may work as a server offering information resources, services, and applications to users or other hosts on the network. Hosts are assigned at least one network address.

A computer participating in networks that use the Internet protocol suite may also be called an IP host. Specifically, computers participating in the Internet are called Internet hosts. Internet hosts and other IP hosts have one or more IP addresses assigned to their network interfaces. The addresses are configured either manually by an administrator, automatically at startup by means of the Dynamic Host Configuration Protocol (DHCP), or by stateless address autoconfiguration methods.

View the full Wikipedia page for Host (network)
↑ Return to Menu

Internet protocol suite in the context of Domain Name Service

The Domain Name System (DNS) is a hierarchical and distributed name service that provides a naming system for computers, services, and other resources on the Internet or other Internet Protocol (IP) networks. It associates various information with domain names (identification strings) assigned to each of the associated entities. Most prominently, it translates readily memorized domain names to the numerical IP addresses needed for locating and identifying computer services and devices with the underlying network protocols. The Domain Name System has been an essential component of the functionality of the Internet since 1985.

The Domain Name System delegates the responsibility of assigning domain names and mapping those names to Internet resources by designating authoritative name servers for each domain. Network administrators may delegate authority over subdomains of their allocated name space to other name servers. This mechanism provides distributed and fault-tolerant service and was designed to avoid a single large central database. In addition, the DNS specifies the technical functionality of the database service that is at its core. It defines the DNS protocol, a detailed specification of the data structures and data communication exchanges used in the DNS, as part of the Internet protocol suite.

View the full Wikipedia page for Domain Name Service
↑ Return to Menu

Internet protocol suite in the context of User Datagram Protocol

In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages (transported as datagrams in packets) to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.

UDP is a connectionless protocol, meaning that messages are sent without negotiating a connection and that UDP does not keep track of what it has sent. UDP provides checksums for data integrity, and port numbers for addressing different functions at the source and destination of the datagram. It has no handshaking dialogues and thus exposes the user's program to any unreliability of the underlying network; there is no guarantee of delivery, ordering, or duplicate protection. If error-correction facilities are needed at the network interface level, an application may instead use Transmission Control Protocol (TCP) or Stream Control Transmission Protocol (SCTP) which are designed for this purpose.

View the full Wikipedia page for User Datagram Protocol
↑ Return to Menu

Internet protocol suite in the context of Transmission Control Protocol

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, file transfer and streaming media rely on TCP, which is part of the transport layer of the TCP/IP suite. SSL/TLS often runs on top of TCP. Today, TCP remains a core protocol for most Internet communication, ensuring reliable data transfer across diverse networks.

TCP is connection-oriented, meaning that sender and receiver firstly need to establish a connection based on agreed parameters; they do this through a three-way handshake procedure. The server must be listening (passive open) for connection requests from clients before a connection is established. Three-way handshake (active open), retransmission, and error detection adds to reliability but lengthens latency. Applications that do not require reliable data stream service may use the User Datagram Protocol (UDP) instead, which provides a connectionless datagram service that prioritizes time over reliability. TCP employs network congestion avoidance. However, there are vulnerabilities in TCP, including denial of service, connection hijacking, TCP veto, and reset attack.

View the full Wikipedia page for Transmission Control Protocol
↑ Return to Menu

Internet protocol suite in the context of Intranet

An intranet is a computer network for sharing information, easier communication, collaboration tools, operational systems, and other computing services within an organization, usually to the exclusion of access by outsiders. The term is used in contrast to public networks, such as the Internet, but uses the same technology based on the Internet protocol suite.

An organization-wide intranet can constitute an important focal point of internal communication and collaboration, and provide a single starting point to access internal and external resources. In its simplest form, an intranet is established with the technologies for local area networks (LANs) and wide area networks (WANs). Many modern intranets have search engines, user profiles, blogs, mobile apps with notifications, and events planning within their infrastructure.

View the full Wikipedia page for Intranet
↑ Return to Menu

Internet protocol suite in the context of Link layer

In computer networking, the link layer is the lowest layer in the Internet protocol suite, the networking architecture of the Internet. The link layer is the group of methods and communications protocols confined to the link that a host is physically connected to. The link is the physical and logical network component used to interconnect hosts or nodes in the network, and a link protocol is a suite of methods and standards that operate only between adjacent network nodes of a network segment.

Despite the different semantics of layering between the Internet protocol suite and OSI model, the link layer is sometimes described as a combination of the OSI's data link layer (layer 2) and physical layer (layer 1).

View the full Wikipedia page for Link layer
↑ Return to Menu

Internet protocol suite in the context of Internet layer

The internet layer is a group of internetworking methods, protocols, and specifications in the Internet protocol suite that are used to transport network packets from the originating host across network boundaries; if necessary, to the destination host specified by an IP address. The internet layer derives its name from its function facilitating internetworking, which is the concept of connecting multiple networks with each other through gateways.

The internet layer does not include the protocols that fulfill the purpose of maintaining link states between the local nodes and that usually use protocols that are based on the framing of packets specific to the link types. Such protocols belong to the link layer. Internet-layer protocols use IP-based packets.

View the full Wikipedia page for Internet layer
↑ Return to Menu

Internet protocol suite in the context of Transport layer

In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.

The details of implementation and semantics of the transport layer of the Internet protocol suite,, which is the foundation of the Internet, and the OSI model of general networking are different. The protocols in use today in this layer for the Internet all originated in the development of TCP/IP. In the OSI model, the transport layer is often referred to as Layer 4, or L4, while numbered layers are not used in TCP/IP.

View the full Wikipedia page for Transport layer
↑ Return to Menu

Internet protocol suite in the context of Session Initiation Protocol

The Session Initiation Protocol (SIP) is a signaling protocol used for initiating, maintaining, modifying, and terminating communication sessions that involve multimedia elements such as voice, video, and messaging. It operates at the application layer of the Internet protocol suite and is widely used in Internet telephony, private IP-based telephone systems, and mobile communication over LTE networks through VoLTE.

SIP is a text-based protocol modeled on the structure of HTTP and SMTP, enabling interoperability and integration with other Internet applications. It provides mechanisms for user location, session setup, and session management, making it a foundational component of modern IP multimedia systems.

View the full Wikipedia page for Session Initiation Protocol
↑ Return to Menu