In the field of heat transfer, intensity of radiation is a measure of the distribution of radiant heat flux per unit area and solid angle, in a particular direction, defined according to
In the field of heat transfer, intensity of radiation is a measure of the distribution of radiant heat flux per unit area and solid angle, in a particular direction, defined according to
Fire is the rapid oxidation of a fuel in the exothermic chemical process of combustion, releasing heat, light, and various reaction products.Flames, the most visible portion of the fire, are produced in the combustion reaction when the fuel reaches its ignition point temperature. Flames from hydrocarbon fuels consist primarily of carbon dioxide, water vapor, oxygen, and nitrogen. If hot enough, the gases may become ionized to produce plasma. The color and intensity of the flame depend on the type of fuel and composition of the surrounding gases.
Fire, in its most common form, has the potential to result in conflagration, which can lead to permanent physical damage. It directly impacts land-based ecological systems worldwide. The positive effects of fire include stimulating plant growth and maintaining ecological balance. Its negative effects include hazards to life and property, atmospheric pollution, and water contamination. When fire removes protective vegetation, heavy rainfall can cause soil erosion. The burning of vegetation releases nitrogen into the atmosphere, unlike other plant nutrients such as potassium and phosphorus which remain in the ash and are quickly recycled into the soil. This loss of nitrogen produces a long-term reduction in the fertility of the soil, though it can be recovered by nitrogen-fixing plants such as clover, peas, and beans; by decomposition of animal waste and corpses, and by natural phenomena such as lightning.
Fire is the rapid oxidation of a fuel in the exothermic chemical process of combustion, releasing heat, light, and various reaction products.Flames, the most visible portion of the fire, are produced in the combustion reaction when the fuel reaches its ignition point temperature. Flames from hydrocarbon fuels consist primarily of carbon dioxide, water vapor, oxygen, and nitrogen. If hot enough, the gases may become ionized to produce plasma. The color and intensity of the flame depend on the type of fuel and composition of the surrounding gases.
Fire, in its most common form, has the potential to result in conflagration, which can lead to permanent physical damage. Fire directly impacts land-based ecological systems worldwide. The positive effects of fire include stimulating plant growth and maintaining ecological balance. Its negative effects include hazards to life and property, atmospheric pollution, and water contamination. When fire removes protective vegetation, heavy rainfall can cause soil erosion. The burning of vegetation releases nitrogen into the atmosphere, unlike other plant nutrients such as potassium and phosphorus which remain in the ash and are quickly recycled into the soil. This loss of nitrogen produces a long-term reduction in the fertility of the soil, though it can be recovered by nitrogen-fixing plants such as clover, peas, and beans; by decomposition of animal waste and corpses, and by natural phenomena such as lightning.
Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity of a grey body object at a frequency .This concept is used in radio astronomy, planetary science, materials science and climatology.
The brightness temperature provides "a more physically recognizable way to describe intensity".