Integument in the context of "External anal sphincter"

Play Trivia Questions online!

or

Skip to study material about Integument in the context of "External anal sphincter"

Ad spacer

⭐ Core Definition: Integument

In biology, an integument is the tissue surrounding an organism's body or an organ within, such as skin, a husk, shell, germ or rind.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Integument in the context of External anal sphincter

The external anal sphincter (or sphincter ani externus) is an oval tube of skeletal muscle fibers. Distally, it is adherent to the skin surrounding the margin of the anus. It exhibits a resting state of tonic contraction and also contracts during the bulbospongiosus reflex.

↓ Explore More Topics
In this Dossier

Integument in the context of Cutaneous respiration

Cutaneous respiration, or cutaneous gas exchange (sometimes called skin breathing), is a form of respiration in which gas exchange occurs across the skin or outer integument of an organism rather than gills or lungs. Cutaneous respiration may be the sole method of gas exchange, or may accompany other forms, such as ventilation. Cutaneous respiration occurs in a wide variety of organisms, including insects, amphibians, fish, sea snakes, turtles, and to a lesser extent in mammals.

↑ Return to Menu

Integument in the context of Exoskeleton

An exoskeleton (from Ancient Greek έξω (éxō) 'outer' and σκελετός (skeletós) 'skeleton') is a skeleton that is on the exterior of an animal in the form of hardened integument, which both supports the body's shape and protects the internal organs, in contrast to an internal endoskeleton (e.g. that of a human) which is enclosed underneath other soft tissues. Some large, hard and non-flexible protective exoskeletons are known as shell or armour.

Examples of exoskeletons in animals include the cuticle skeletons shared by arthropods (insects, chelicerates, myriapods and crustaceans) and tardigrades, as well as the skeletal cups formed by hardened secretion of stony corals, the test/tunic of sea squirts and sea urchins, and the prominent mollusc shell shared by snails, clams, tusk shells, chitons and nautilus. Some vertebrate animals, such as the turtle, have both an endoskeleton and a protective exoskeleton.

↑ Return to Menu

Integument in the context of Ovule

In seed plants, the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus (or remnant of the megasporangium), and the female gametophyte (formed from a haploid megaspore) in its center. The female gametophyte — specifically termed a megagametophyte — is also called the embryo sac in angiosperms. The megagametophyte produces an egg cell for the purpose of fertilization. The ovule is a small structure present in the ovary. It is attached to the placenta by a stalk called a funicle. The funicle provides nourishment to the ovule. On the basis of the relative position of micropyle, body of the ovule, chalaza and funicle, there are six types of ovules.

↑ Return to Menu

Integument in the context of Aril

An aril (/ˈærɪl/), also called arillus (plural arilli), is a specialized outgrowth from a seed that partly or completely covers the seed. An arillode, or false aril, is sometimes distinguished: whereas an aril grows from the attachment point of the seed to the ovary (from the funiculus or hilum), an arillode forms from a different point on the seed coat. The term "aril" is sometimes applied to any fleshy appendage of the seed in flowering plants, such as the mace of the nutmeg seed. Arils and arillodes are often edible enticements that encourage animals to transport the seed, thereby assisting in seed dispersal. Pseudarils are aril-like structures commonly found on the pyrenes of Burseraceae species that develop from the mesocarp of the ovary. The fleshy, edible pericarp splits neatly in two halves, then falling away or being eaten to reveal a brightly coloured pseudaril around the black seed.

The aril may create a fruit-like structure, called (among other names) a false fruit. False fruit are found in numerous Angiosperm taxa. The edible false fruit of the longan, lychee and ackee fruits are highly developed arils surrounding the seed rather than a pericarp layer. Such arils are also found in a few species of gymnosperms, notably the yews and related conifers such as the lleuque and the kahikatea. Instead of the woody cone typical of most gymnosperms, the reproductive structure of the yew consists of a single seed that becomes surrounded by a fleshy, cup-like covering. This covering is derived from a highly modified cone scale.

↑ Return to Menu

Integument in the context of Sarcotesta

The sarcotesta is a fleshy seedcoat, a type of testa. Examples of seeds with a sarcotesta are pomegranate, ginkgo and some cycad seeds. The sarcotesta of pomegranate seeds consists of epidermal cells derived from the integument, and there are no arils on these seeds.

↑ Return to Menu

Integument in the context of Arthropod exoskeleton

Arthropods are covered with a tough, resilient integument, cuticle or exoskeleton of chitin. Generally the exoskeleton will have thickened areas in which the chitin is reinforced or stiffened by materials such as minerals or hardened proteins. This happens in parts of the body where there is a need for rigidity or elasticity. Typically the mineral crystals, mainly calcium carbonate, are deposited among the chitin and protein molecules in a process called biomineralization. The crystals and fibres interpenetrate and reinforce each other, the minerals supplying the hardness and resistance to compression, while the chitin supplies the tensile strength. Biomineralization occurs mainly in crustaceans. In insects and arachnids, the main reinforcing materials are various proteins hardened by linking the fibres in processes called sclerotisation and the hardened proteins are called sclerotin. The dorsal tergum, ventral sternum, and the lateral pleura form the hardened plates or sclerites of a typical body segment.

In either case, in contrast to the carapace of a tortoise or the cranium of a vertebrate, the exoskeleton has little ability to grow or change its form once it has matured. Except in special cases, whenever the animal needs to grow, it moults, shedding the old skin after growing a new skin from beneath.

↑ Return to Menu