Integral equation in the context of "Laplace transform"

Play Trivia Questions online!

or

Skip to study material about Integral equation in the context of "Laplace transform"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Integral equation in the context of Laplace transform

In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ləˈplɑːs/), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain or s-plane). The functions are often denoted by for the time-domain representation and for the frequency-domain.

The transform is useful for converting differentiation and integration in the time domain into much easier multiplication and division in the Laplace domain (analogous to how logarithms are useful for simplifying multiplication and division into addition and subtraction). This gives the transform many applications in science and engineering, mostly as a tool for solving linear differential equations and dynamical systems by simplifying ordinary differential equations and integral equations into algebraic polynomial equations, and by simplifying convolution into multiplication.

↓ Explore More Topics
In this Dossier

Integral equation in the context of Functional equation

In mathematics, a functional equation is, in the broadest meaning, an equation in which one or several functions appear as unknowns. So, differential equations and integral equations are functional equations. However, a more restricted meaning is often used, where a functional equation is an equation that relates several values of the same function. For example, the logarithm functions are essentially characterized by the logarithmic functional equation .

If the domain of the unknown function is supposed to be the natural numbers, the function is generally viewed as a sequence, and, in this case, a functional equation (in the narrower meaning) is called a recurrence relation. Thus the term functional equation is used mainly for real functions and complex functions. Moreover a smoothness condition is often assumed for the solutions, since without such a condition, most functional equations have highly irregular solutions. For example, the gamma function is a function that satisfies the functional equation and the initial value There are many functions that satisfy these conditions, but the gamma function is the unique one that is meromorphic in the whole complex plane, and logarithmically convex for x real and positive (Bohr–Mollerup theorem).

↑ Return to Menu