Integer programming in the context of Polyhedral combinatorics


Integer programming in the context of Polyhedral combinatorics

Integer programming Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Integer programming in the context of "Polyhedral combinatorics"


⭐ Core Definition: Integer programming

An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear.

Integer programming is NP-complete (the difficult part is showing the NP membership). In particular, the special case of 0–1 integer linear programming, in which unknowns are binary, and only the restrictions must be satisfied, is one of Karp's 21 NP-complete problems.

↓ Menu
HINT:

👉 Integer programming in the context of Polyhedral combinatorics

Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.

Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex). Additionally, many computer scientists use the phrase “polyhedral combinatorics” to describe research into precise descriptions of the faces of certain specific polytopes (especially 0-1 polytopes, whose vertices are subsets of a hypercube) arising from integer programming problems.

↓ Explore More Topics
In this Dossier

Integer programming in the context of Applied mathematics

Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical science and specialized knowledge. The term "applied mathematics" also describes the professional specialty in which mathematicians work on practical problems by formulating and studying mathematical models.

In the past, practical applications have motivated the development of mathematical theories, which then became the subject of study in pure mathematics where abstract concepts are studied for their own sake. The activity of applied mathematics is thus intimately connected with research in pure mathematics.

View the full Wikipedia page for Applied mathematics
↑ Return to Menu

Integer programming in the context of Vehicle routing problem

The vehicle routing problem (VRP) is a combinatorial optimization and integer programming problem which asks "What is the optimal set of routes for a fleet of vehicles to traverse in order to deliver to a given set of customers?" The problem first appeared, as the truck dispatching problem, in a paper by George Dantzig and John Ramser in 1959, in which it was applied to petrol deliveries. Often, the context is that of delivering goods located at a central depot to customers who have placed orders for such goods. However, variants of the problem consider, e.g, collection of solid waste and the transport of the elderly and the sick to and from health-care facilities. The standard objective of the VRP is to minimise the total route cost. Other objectives, such as minimising the number of vehicles used or travelled distance are also considered.

The VRP generalises the travelling salesman problem (TSP), which is equivalent to requiring a single route to visit all locations. As the TSP is NP-hard, the VRP is also NP-hard.

View the full Wikipedia page for Vehicle routing problem
↑ Return to Menu

Integer programming in the context of Constraint (mathematics)

In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set.

View the full Wikipedia page for Constraint (mathematics)
↑ Return to Menu