Insulin resistance in the context of "Lipodystrophy"

Play Trivia Questions online!

or

Skip to study material about Insulin resistance in the context of "Lipodystrophy"




⭐ Core Definition: Insulin resistance

Insulin resistance (IR) is a pathological response in which cells in insulin-sensitive tissues in the body fail to respond normally to the hormone insulin or downregulate insulin receptors in response to hyperinsulinemia.

Insulin is a hormone that facilitates the transport of glucose from blood into cells, thereby reducing blood glucose (blood sugar). Insulin is released by the pancreas in response to carbohydrates consumed in the diet. In states of insulin resistance, the same amount of insulin does not have the same effect on glucose transport and blood sugar levels. There are many causes of insulin resistance and the underlying process is still not completely understood. Risk factors for insulin resistance include obesity, sedentary lifestyle, family history of diabetes, various health conditions, and certain medications. Insulin resistance is considered a component of the metabolic syndrome. Insulin resistance can be improved or reversed with lifestyle approaches, such as weight reduction, exercise, and dietary changes.

↓ Menu

👉 Insulin resistance in the context of Lipodystrophy

Lipodystrophy syndromes are a group of genetic or acquired disorders in which the body is unable to produce and maintain healthy fat tissue. The medical condition is characterized by abnormal or degenerative conditions of the body's adipose tissue. A more specific term, lipoatrophy (from Greek lipo 'fat' and atrophy 'abnormal or degenerative condition'), is used when describing the loss of fat from one area (usually the face). This condition is also characterized by a lack of circulating leptin which may lead to osteosclerosis. The absence of fat tissue is associated with insulin resistance, hypertriglyceridemia, non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome.

↓ Explore More Topics
In this Dossier

Insulin resistance in the context of Type 2 diabetes

Diabetes mellitus type 2, commonly known as type 2 diabetes (T2D), and formerly known as adult-onset diabetes, is a form of diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. Common symptoms include increased thirst, frequent urination, fatigue and unexplained weight loss. Other symptoms include increased hunger, having a sensation of pins and needles, and sores (wounds) that heal slowly. Symptoms often develop slowly. Long-term complications from high blood sugar include heart disease, stroke, diabetic retinopathy, which can result in blindness, kidney failure, and poor blood flow in the lower limbs, which may lead to amputations. A sudden onset of hyperosmolar hyperglycemic state may occur; however, ketoacidosis is uncommon.

Type 2 diabetes primarily occurs as a result of obesity and lack of exercise. Some people are genetically more at risk than others. Type 2 diabetes makes up about 90% of cases of diabetes, with the other 10% due primarily to type 1 diabetes and gestational diabetes.

↑ Return to Menu

Insulin resistance in the context of Gestational diabetes

Gestational diabetes is a condition in which a woman without diabetes develops high blood sugar levels during pregnancy. Gestational diabetes generally results in few symptoms. Obesity increases the rate of pre-eclampsia, cesarean sections, and embryo macrosomia, as well as gestational diabetes. Babies born to individuals with poorly treated gestational diabetes are at increased risk of macrosomia, of having hypoglycemia after birth, and of jaundice. If untreated, diabetes can also result in stillbirth. Long term, children are at higher risk of being overweight and of developing type 2 diabetes.

Gestational diabetes can occur during pregnancy because of insulin resistance or reduced production of insulin. Risk factors include being overweight, previously having gestational diabetes, a family history of type 2 diabetes, and having polycystic ovarian syndrome. Diagnosis is by blood tests. For those at normal risk, screening is recommended between 24 and 28 weeks' gestation. For those at high risk, testing may occur at the first prenatal visit.

↑ Return to Menu

Insulin resistance in the context of Adipose tissue macrophages

Adipose tissue macrophages (ATMs) comprise resident macrophages present in adipose tissue. Besides adipocytes, adipose tissue contains the stromal vascular fraction (SVF) of cells that includes pre-adipocytes, fibroblasts, vascular endothelial cells, and a large variety of immune cells. The latter ones are composed of mast cells, eosinophils, B cells, T cells and macrophages. The number of macrophages within adipose tissue differs depending on the metabolic status. As discovered by Rudolph Leibel and Anthony Ferrante et al. in 2003 at Columbia University, the percentage of macrophages within adipose tissue ranges from 10% in lean mice and humans up to 50% in obese leptin deficient mice, and up to 40% in obese humans. ATMs comprise nearly 50% of all immune cells in normal conditions, suggesting an important role in supporting normal functioning of the adipose tissue. Increased number of adipose tissue macrophages may correlate with increased production of pro-inflammatory molecules and might therefore contribute to the pathophysiological consequences of obesity (e.g. insulin resistance, type 2 diabetes), although is becoming recognized that in healthy conditions tissue-resident macrophages actively support a variety of critical physiological functions in nearly all organs and tissues, including adipose tissue.

↑ Return to Menu

Insulin resistance in the context of Hyperandrogenism

Hyperandrogenism is a medical condition characterized by high levels of androgens. It is more common in women than men. Symptoms of hyperandrogenism may include acne, seborrhea, hair loss on the scalp, increased body or facial hair, and infrequent or absent menstruation. Complications may include high blood cholesterol and diabetes. It occurs in approximately 5% of women of reproductive age.

Polycystic ovary syndrome accounts for about 70% of hyperandrogenism cases. Other causes include Congenital adrenal hyperplasia, insulin resistance, hyperprolactinemia, Cushing's disease, certain types of cancers, and certain medications. Diagnosis often involves blood tests for testosterone, 17-hydroxyprogesterone, and prolactin, as well as a pelvic ultrasound.

↑ Return to Menu

Insulin resistance in the context of Pyruvate dehydrogenase complex

Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric acid cycle. Pyruvate decarboxylation is also known as the "pyruvate dehydrogenase reaction" because it also involves the oxidation of pyruvate. The levels of pyruvate dehydrogenase enzymes play a major role in regulating the rate of carbohydrate metabolism and are strongly stimulated by the evolutionarily ancient hormone insulin. The PDC is opposed by the activity of pyruvate dehydrogenase kinase, and this mechanism plays a pivotal role in regulating rates of carbohydrate and lipid metabolism in many physiological states across taxa, including feeding, starvation, diabetes mellitus, hyperthyroidism, and hibernation.

The multienzyme complex is structurally and functionally related to the oxoglutarate dehydrogenase complex (OGDC), the 2-oxoadipate dehydrogenase complex (OADHC) and the branched-chain oxo-acid dehydrogenase complex (BCKDC), all of which are members of the 2-oxoacid dehydrogenase complex family. A role for insulin in the regulation of glucose homeostasis, pyruvate dehydrogenase levels, and the generation of AMP-activated protein kinase (AMPK) in the electron transport chain has been evolutionarily conserved across species. A shift in substrate utilization can be induced by conditions such as eating or fasting, and the oxidation of either glucose or fatty acids tends to suppress the use of the other substrate (a phenomenon known as the Randle cycle). The intake of macronutrients stimulates the secretion and release of insulin and other chemical messengers such as glucagon-like peptide 1 (GLP-1), which act to regulate glucose levels, insulin sensitivity, satiety, and fat balance in the body. In the postprandial period, insulin is produced by the pancreas and serves to activate carbohydrate metabolism and stimulate glucose disposal in order to meet metabolic demands and prevent glucotoxicity. When insulin is unable to efficiently stimulate glucose utilization, the body's tissues become resistant to its hypoglycemic effects, promoting the development of a state of insulin resistance over time. This can happen because of chronic exposure to hyperinsulinemia due to poor diet, sedentary lifestyle, obesity, and other potentially modifiable risk factors. The phenomenon is similar to leptin resistance and can potentially lead to many deleterious health effects stemming from chronically elevated insulin levels, such as excessive fat storage and de novo synthesis, hepatic and peripheral insulin resistance, nonalcoholic fatty liver disease] (NAFLD), hypertension and dyslipidemia, and decreased resting energy expenditure (REE) caused by impaired diet-induced thermogenesis.

↑ Return to Menu