Industrial processes in the context of Oil refining


Industrial processes in the context of Oil refining

Industrial processes Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Industrial processes in the context of "Oil refining"


⭐ Core Definition: Industrial processes

Industrial processes are procedures involving chemical, physical, electrical, or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry.

↓ Menu
HINT:

In this Dossier

Industrial processes in the context of Oil refinery

An oil refinery or petroleum refinery is an industrial process plant where petroleum (crude oil) is transformed and refined into products such as gasoline (petrol), diesel fuel, asphalt base, fuel oils, heating oil, kerosene, liquefied petroleum gas and petroleum naphtha. Petrochemical feedstock like ethylene and propylene can also be produced directly by cracking crude oil without the need of using refined products of crude oil such as naphtha. The crude oil feedstock has typically been processed by an oil production plant. There is usually an oil depot at or near an oil refinery for the storage of incoming crude oil feedstock as well as bulk liquid products. In 2020, the total capacity of global refineries for crude oil was about 101.2 million barrels per day.

Oil refineries are typically large, sprawling industrial complexes with extensive piping running throughout, carrying streams of fluids between large chemical processing units, such as distillation columns. In many ways, oil refineries use many different technologies and can be thought of as types of chemical plants. Since December 2008, the world's largest oil refinery has been the Jamnagar Refinery owned by Reliance Industries, located in Gujarat, India, with a processing capacity of 1.24 million barrels (197,000 m) per day.

View the full Wikipedia page for Oil refinery
↑ Return to Menu

Industrial processes in the context of Combustion

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion (e.g., using a lit match to light a fire), the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.

Combustion is often a complicated sequence of elementary radical reactions. Solid fuels, such as wood and coal, first undergo endothermic pyrolysis to produce gaseous fuels whose combustion then supplies the heat required to produce more of them. Combustion is often hot enough that incandescent light in the form of either glowing or a flame is produced. A simple example can be seen in the combustion of hydrogen and oxygen into water vapor, a reaction which is commonly used to fuel rocket engines. This reaction releases 242 kJ/mol of heat and reduces the enthalpy accordingly (at constant temperature and pressure):

View the full Wikipedia page for Combustion
↑ Return to Menu

Industrial processes in the context of Industrial technology

Industrial technology is the use of engineering and manufacturing technology to make production faster, simpler, and more efficient. The industrial technology field employs creative and technically proficient individuals who can help a company achieve efficient and profitable productivity.

Industrial technology programs typically include instruction in optimization theory, human factors, organizational behavior, industrial processes, industrial planning procedures, computer applications, and report and presentation preparation.

View the full Wikipedia page for Industrial technology
↑ Return to Menu

Industrial processes in the context of Process engineering


Process engineering is a field of study focused on the development and optimization of industrial processes. It consists of the understanding and application of the fundamental principles and laws of nature to allow humans to transform raw material and energy into products that are useful to society, at an industrial level. By taking advantage of the driving forces of nature such as pressure, temperature and concentration gradients, as well as the law of conservation of mass, process engineers can develop methods to synthesize and purify large quantities of desired chemical products. Process engineering focuses on the design, operation, control, optimization and intensification of chemical, physical, and biological processes. Their work involves analyzing the chemical makeup of various ingredients and determining how they might react with one another. A process engineer can specialize in a number of areas, including the following:

  • Agriculture processing
  • Food and dairy production
  • Beer and whiskey production
  • Cosmetics production
  • Pharmaceutical production
  • Petrochemical manufacturing
  • Mineral processing
  • Printed circuit board production
View the full Wikipedia page for Process engineering
↑ Return to Menu

Industrial processes in the context of Process control

Industrial process control (IPC) or simply process control is a system used in modern manufacturing which uses the principles of control theory and physical industrial control systems to monitor, control and optimize continuous industrial production processes using control algorithms. This ensures that the industrial machines run smoothly and safely in factories and efficiently use energy to transform raw materials into high-quality finished products with reliable consistency while reducing energy waste and economic costs, something which could not be achieved purely by human manual control.

In IPC, control theory provides the theoretical framework to understand system dynamics, predict outcomes and design control strategies to ensure predetermined objectives, utilizing concepts like feedback loops, stability analysis and controller design. On the other hand, the physical apparatus of IPC, based on automation technologies, consists of several components. Firstly, a network of sensors continuously measure various process variables (such as temperature, pressure, etc.) and product quality variables. A programmable logic controller (PLC, for smaller, less complex processes) or a distributed control system (DCS, for large-scale or geographically dispersed processes) analyzes this sensor data transmitted to it, compares it to predefined setpoints using a set of instructions or a mathematical model called the control algorithm and then, in case of any deviation from these setpoints (e.g., temperature exceeding setpoint), makes quick corrective adjustments through actuators such as valves (e.g. cooling valve for temperature control), motors or heaters to guide the process back to the desired operational range. This creates a continuous closed-loop cycle of measurement, comparison, control action, and re-evaluation which guarantees that the process remains within established parameters. The HMI (Human-Machine Interface) acts as the "control panel" for the IPC system where small number of human operators can monitor the process and make informed decisions regarding adjustments. IPCs can range from controlling the temperature and level of a single process vessel (controlled environment tank for mixing, separating, reacting, or storing materials in industrial processes.) to a complete chemical processing plant with several thousand control feedback loops.

View the full Wikipedia page for Process control
↑ Return to Menu

Industrial processes in the context of Spallation

Spallation is a process in which fragments of material (spall) are ejected from a body due to impact or stress. In the context of impact mechanics it describes ejection of material from a target during impact by a projectile. In planetary physics, spallation describes meteoritic impacts on a planetary surface and the effects of stellar winds and cosmic rays on planetary atmospheres and surfaces. In the context of mining or geology, spallation can refer to pieces of rock breaking off a rock face due to the internal stresses in the rock; it commonly occurs on mine shaft walls. In the context of metal oxidation, spallation refers to the breaking off of the oxide layer from a metal. For example, the flaking off of rust from iron. In the context of anthropology, spallation is a process used to make stone tools such as arrowheads by knapping. In nuclear physics, spallation is the process in which a heavy nucleus emits numerous nucleons as a result of being hit by a high-energy particle, thus greatly reducing its atomic weight. In industrial processes and bioprocessing the loss of tubing material due to the repeated flexing of the tubing within a peristaltic pump is termed spallation.

View the full Wikipedia page for Spallation
↑ Return to Menu