Inclinometer in the context of "Surveying"

⭐ In the context of Surveying, an inclinometer is considered…

Ad spacer

⭐ Core Definition: Inclinometer

An inclinometer or clinometer is an instrument used for measuring angles of slope, elevation, or depression of an object with respect to gravity's direction. It is also known as a tilt indicator, tilt sensor, tilt meter, slope alert, slope gauge, gradient meter, gradiometer, level gauge, level meter, declinometer, and pitch & roll indicator. Clinometers measure both inclines and declines using three different units of measure: degrees, percentage points, and topos. The astrolabe is an example of an inclinometer that was used for celestial navigation and location of astronomical objects from ancient times to the Renaissance.

A tilt sensor can measure the tilting in often two axes of a reference plane in two axes.In contrast, a full motion would use at least three axes and often additional sensors. One way to measure tilt angle with reference to the earth's ground plane, is to use an accelerometer. Typical applications can be found in the industry and in game controllers. In aircraft, the "ball" in turn coordinators or turn and bank indicators is sometimes referred to as an inclinometer.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Inclinometer in the context of Surveying

Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial positions of points based on the distances and angles between them. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designated positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

A professional in land surveying is called a land surveyor.Surveyors work with elements of geodesy, geometry, trigonometry, regression analysis, physics, engineering, metrology, programming languages, and the law. They use equipment, such as total stations, robotic total stations, theodolites, GNSS receivers, retroreflectors, 3D scanners, lidar sensors, radios, inclinometer, handheld tablets, optical and digital levels, subsurface locators, drones, GIS, and surveying software.

↓ Explore More Topics
In this Dossier

Inclinometer in the context of Astrolabe

An astrolabe (Ancient Greek: ἀστρολάβος, romanizedastrolábos, lit.'star-taker'; Arabic: ٱلأَسْطُرلاب, romanizedal-Asṭurlāb; Persian: ستاره‌یاب, romanizedSetāreyāb) is an astronomical instrument dating to ancient times. It serves as a star chart and physical model of the visible half-dome of the sky. Its various functions also make it an elaborate inclinometer and an analog calculation device capable of working out several kinds of problems in astronomy. In its simplest form it is a metal disc with a pattern of wires, cutouts, and perforations that allows a user to calculate astronomical positions precisely. It is able to measure the altitude above the horizon of a celestial body, day or night; it can be used to identify stars or planets, to determine local latitude given local time (and vice versa), to survey, or to triangulate. It was used in classical antiquity, the Byzantine Empire, the Islamic Golden Age, the European Middle Ages and the Age of Discovery for all these purposes.

The astrolabe, which is a precursor to the sextant,is effective for determining latitude on land or calm seas. Although it is less reliable on the heaving deck of a ship in rough seas, the mariner's astrolabe was developed to solve that problem.

↑ Return to Menu

Inclinometer in the context of Mariner's astrolabe

The mariner's astrolabe, also called sea astrolabe, was an inclinometer used to determine the latitude of a ship at sea by measuring the sun's noon altitude (declination) or the meridian altitude of a star of known declination. Not an astrolabe proper, the mariner's astrolabe was rather a graduated circle with an alidade used to measure vertical angles. They were designed to allow for their use on boats in rough water and/or in heavy winds, which astrolabes are ill-equipped to handle. It's notable for its role during the Age of Exploration where Portuguese and Spanish navigators used it to great success. In the sixteenth century, the instrument was also called a ring.

↑ Return to Menu

Inclinometer in the context of Tiltmeter

A tiltmeter is a sensitive inclinometer designed to measure very small changes from the vertical level, either on the ground or in structures. Tiltmeters are used extensively for monitoring volcanoes, the response of dams to filling, the small movements of potential landslides, the orientation and volume of hydraulic fractures, and the response of structures to various influences such as loading and foundation settlement. Tiltmeters may be purely mechanical or incorporate vibrating-wire or electrolytic sensors for electronic measurement. A sensitive instrument can detect changes of as little as one arc second.

Tiltmeters have a long, diverse history, somewhat parallel to the history of the seismometer. The very first tiltmeter was a long-length stationary pendulum. These were used in the very first large concrete dams, and are still in use today, augmented with newer technology such as laser reflectors. Although they had been used for other applications such as volcano monitoring, they have distinct disadvantages, such as their huge length and sensitivity to air currents. Even in dams, they are slowly being replaced by the modern electronic tiltmeter.

↑ Return to Menu

Inclinometer in the context of Turn coordinator

In aviation, the turn and slip indicator (T/S, a.k.a. turn indicator and turn and bank indicator) and the turn coordinator (TC) variant are essentially two aircraft flight instruments in one device. One indicates the rate of turn, or the rate of change in the aircraft's heading; the other part indicates whether the aircraft is in coordinated flight, showing the slip or skid of the turn. The slip indicator is actually an inclinometer that at rest displays the angle of the aircraft's transverse axis with respect to horizontal, and in motion displays this angle as modified by the acceleration of the aircraft. The most commonly used units are degrees per second (deg/s) or minutes per turn (min/tr).

↑ Return to Menu