Image intensifier in the context of "Night-vision device"

Play Trivia Questions online!

or

Skip to study material about Image intensifier in the context of "Night-vision device"

Ad spacer

⭐ Core Definition: Image intensifier

An image intensifier or image intensifier tube is a vacuum tube device for increasing the intensity of available light in an optical system to allow use under low-light conditions, such as at night, to facilitate visual imaging of low-light processes, such as fluorescence of materials in X-rays or gamma rays (X-ray image intensifier), or for conversion of non-visible light sources, such as near-infrared or short wave infrared to visible. They operate by converting photons of light into electrons, amplifying the electrons (usually with a microchannel plate), and then converting the amplified electrons back into photons for viewing. They are used in devices such as night-vision goggles.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Image intensifier in the context of Night-vision device

A night-vision device (NVD), also known as a night optical/observation device (NOD) or night-vision goggle (NVG), is an optoelectronic device that allows visualization of images in low levels of light, improving the user's night vision.

The device enhances ambient visible light and converts near-infrared light into visible light which can then be seen by humans; this is known as I (image intensification). By comparison, viewing of infrared thermal radiation is referred to as thermal imaging and operates in a different section of the infrared spectrum.

↓ Explore More Topics
In this Dossier

Image intensifier in the context of Night vision

Night vision is the ability to see in low-light conditions, either naturally with scotopic vision or through a night-vision device. Night vision requires both sufficient spectral range and sufficient intensity range. Humans have poor night vision compared to many animals such as cats, dogs, foxes and rabbits, in part because the human eye lacks a tapetum lucidum, tissue behind the retina that reflects light back through the retina thus increasing the light available to the photoreceptors.

↑ Return to Menu

Image intensifier in the context of X-ray image intensifier

An X-ray image intensifier (XRII) is an image intensifier that converts X-rays into visible light at higher intensity than the more traditional fluorescent screens can. Such intensifiers are used in X-ray imaging systems (such as fluoroscopes) to allow low-intensity X-rays to be converted to a conveniently bright visible light output. The device contains a low absorbency/scatter input window, typically aluminum, input fluorescent screen, photocathode, electron optics, output fluorescent screen and output window. These parts are all mounted in a high vacuum environment within glass or, more recently, metal/ceramic. By its intensifying effect, It allows the viewer to more easily see the structure of the object being imaged than fluorescent screens alone, whose images are dim. The XRII requires lower absorbed doses due to more efficient conversion of X-ray quanta to visible light. This device was originally introduced in 1948.

↑ Return to Menu

Image intensifier in the context of Telescopic sight

A telescopic sight, commonly called a scope informally, is an optical sighting device based on a refracting telescope. Sights are equipped with a referencing pattern (reticle) mounted in a focally appropriate position in its optical system to provide an accurate point of aim. Telescopic sights are classified in terms of the optical magnification (power) and the objective lens diameter.

The first experiments directed to give shooters optical aiming aids go back to the early 17th century. For centuries, different optical aiming aids and primitive predecessors of telescopic sights were created that had practical or performance limitations. Most early telescopic sights were fixed-power and were in essence specially designed viewing telescopes. Telescopic sights with variable magnifications appeared later, and were varied by manually adjusting a zoom mechanism behind the erector lenses. Other types of scopes include prism sights and low-power variable optics.

↑ Return to Menu